
Proof of Stake and Activity: Rewarding

On-Chain Activity through Consensus

Karen Terjanian, Aram Jivanyan, Dmitry Sidorov

June 7, 2023

Abstract

We propose a new consensus protocol for blockchain, that builds upon
the Ethereum consensus protocol by combining its Proof of Stake com-
ponent with a special Proof of Activity type of system. Our Proof of
Stake and Activity (PoSA) protocol offers an interesting economic model
for both simulating decentralization and also rewarding validators based
on both their initial stake (wealth) and also on the business value they
generate on the chain (creativity). The protocol will be deployed on a
full-fledged blockchain platform designed for iGaming and other markets.

1 Introduction

In this note, we discuss a novel consensus method that motivates active network
participants and builders to become chain validators and directly rewards their
activity. This method will allow the creative dApp creators to get rewarded for
the business value they bring to the chain. The presented consensus method
referred to as Proof of Consensus and Activity still requires the validators to
stake a fixed amount of assets to enable slashing mechanisms in the consensus
processes. This means every staker can become a validator, but the validator
rewards can be increased based on his on-chain activity.

2 Design Rational

In this section we briefly describe the main design points behind the PoSA
consensus mechanism.

2.1 Consensus Mechanism

The presented PoSA consensus algorithm replicates Ethereum’s Proof of Stake
concepts with an interesting modification. The validators are selected not only
based on their effective stakes but based on their overall Validator Power,
which is calculated based on the Validator’s staked amount and its generated
activity as will be discussed in the following sections. Here are a few important
points highlighting the overall design and similarities with Ethereum.

• Like Ethereum, we will maintain both the blockchain execution layer and
the consensus layer.

1

• Certain amounts of tokens will be burned in the execution layer per block
and new tokens will be minted on the consensus layer. The details of burn
and issuance mechanisms will be detailed in the sections below.

• A single proposer is chosen to propose the next block and a committee is
selected to validate the proposer’s proposal. Both the proposer and the
committee members will be rewarded for their honest and on-time activity
The rewarding mechanism will be detailed in the section below.

• The Proposers and sync committee members will get penalties like in
Ethereum for misconducting their actions. The penalty mechanisms are
detailed in Section 2.8.5 in [1]

• The maximum number of validators in our economy is now limited by
20480. This limitation can be cancelled in the future. The minimum
target is starting from 4096 validators.

• The stake amount per validator is fixed to be 8192 FTN. Assuming all
20480 validators are joined to the network, this will result in 8192·20480 =
167772160 staked FTN tokens, which is the 16.77 % of maximum supply.

• The block time is 12 seconds like in Ethereum. The number of blocks per
year will be 2628000 = 5 · 60 · 24 · 365.

• I - Is the default yearly minted amount according to issuance formula
I = F · S√

S
where S is the sum of the effective balances of validators

- S =
∑

i EBi. F is a constant chosen by the development team to hit
certain issuance rates under concrete conditions. At this moment F = 156
in order to ensure at least 7 % return in the setup with 4096 validators.
This constant can be adjusted to control the minimum return of interest
for each validator.

2.2 Staking

In order to become a validator, the network participant must stake a certain
amount smax of native tokens. This staked amount is locked up as a security
deposit on the network and is used as collateral which compels the validator
nodes to behave properly and keep the network secure. The stake size is fixed
to be 8192 which is referred to as the validator’s actual balance. The validator’s
effective balance EBi is the actual balance deducted by the penalties happened
due to slashing.

In our consensus algorithm, we replicate the slashing and penalty mechanisms
designed and used by the Ethereum blockchain with minor modifications [2].
Note that slashing occurs when validators break very specific protocol rules
which could be part of an attack on the chain. Validators will receive penalties
which can be of three different types depending on the validator’s violation. We
preserve the logic of correlated penalties where a light punishment is happening
for isolated incidents, but a severe punishment occurs when many validators are
slashed in a short time period. Like in Ethereum, the block proposers will re-
ceive rewards for reporting evidence of slashable offenses. The details of slashing
mechanism in Ethereum are detailed in [2] but for the sake of paper integrity

2

we will discuss the most relevant aspects here.

The Initial Penalty: Slashing is triggered by the evidence of the offense
being included in a beacon chain block. Once the evidence is confirmed by the
network, the offending validator (or validators) is slashed. The offender imme-
diately has 1

32 of its actual balance deducted from its effective balance. This
is a maximum of 256 FTN due to the cap on effective balance. The effective
balance defines the probability of a certain validator being selected as a block
proposer or as a committee member. Along with the initial penalty, the valida-
tor is queued for exit, and has its withdrawability epoch set to around 36 days
in the future.

The Correlated Penalty: 18 days after being slashed which is the halfway
point of its withdrawability period, the slashed validator is due to receive a
second penalty which is more a correlated penalty and can be zero when there
will not be many other slashings during that 18 days of period. This second
penalty is based on the total amount of stake slashed during the 18 days before
and after our validator was slashed. The idea is to scale the punishment so
that a one-off event posing little threat to the chain is only lightly punished,
while a mass slashing event that might be the result of an attempt to finalize
conflicting blocks is punished to the maximum extent possible. To be able to
calculate this, the beacon chain maintains a record of the effective balances of
all validators that were slashed during the most recent 8192 epochs (about 36
days). The correlated penalty calculation is detailed in [2]

The effective balance which is the validator staked balance minus all penal-
ties up to that certain period will play a vital role in calculating the validator’s
power which in turn will define the success probability of the certain validator
being selected in the consensus protocol as a block proposer or a sync committee
member.

2.3 Validator Activity Score Calculation

The purpose of PoSa consensus protocol is to have a decentralized network
where the decision-making power is given to entities not only affording to hold
a stake on chain, but more importantly to ones generating certain on-chain ac-
tivity and thus maximizing the network value in general. In order to do that,
we allow each validator to link an active smart contract for his activity con-
sideration and next provide an on-chain activity evaluation method which can
be uniformly applied to any smart contract. The quantification approach we
will discuss below will eventually allow assigning a deterministic and publicly
verifiable activity score to each validator for the given epoch. Note that we still
require each validator to lock-up the collateral (stake) and hence this activity
score parameter should share the same unit of measurement as the validator’s
stake, which is the ledger’s native currency. In our consensus model, a valida-
tor may participate in the consensus with only a staked amount, in which case
his activity score will be simply zero. For all other validators associated with
active smart contracts and generating on-chain activity, their on-chain activity
is properly calculated and added to the staked amount defining the validator’s
final power in the decision-making processes.

3

We chose a window size to be equal to 1575 epochs and each epoch to be com-
prised of 32 blocks. Each validator activity score and hence validator power is
calculated and updated over epochs. The validator activity score is calculated
based on the gas amount of all transactions associated with the validator’s
contract. Following the Ethereum’s transaction fee calculation formula, each
transaction fee on our chain will be computed as

txfee = gas price · (21000 + txgas)

where gas price is the current gas price defined by the market dynamics, the
21000 is a fixed constant gas amount, and txgas is assigned in a deterministic
way based on the smart contract code instructions. For asset transfer transac-
tions not requiring any smart contract code execution, the transaction fee will
be simply txfee = gas price · 21000

Let’s define the activity score assigned to a certain transaction as atx and the ac-
tivity score assigned to the smart contract for the given epoch e as Ae

contract. For
computing the smart contract transaction activity score, we omit the constant
21000 gas and assign

atx = txgas

. The smart contract activity score for the given epoch is the aggregation of all
its transaction activities which has happened during that period of time.

Ae
contract =

∑
tx∈e

atx =
∑
tx∈e

txgas

. The smart contract activity score is updated at each epoch through Algorithm
1. According to this logic, the activity score is updated at each epoch Ascorei

contract

gradually by adjusting to the score change dynamics spanned over the window
period.

2.4 Validator Power

The validator V’s power is the final property that defines V’s participation in
the block validation lotteries. We assume there are n validators V1, V2, . . . , Vn

for the given epoch and denote the effective balance of the i-th validator for
the given epoch by EBi. Next, the overall activity happening on-chain over the
given epoch can be summarized as the sum of three independent components
defined as follows:

• Validators Activity A: A is the aggregation of all smart contracts
activity scores which are associated with the validators. By defining the i-
th validator’s activity score as Ai, we will haveA =

∑
i∈1,...,n Ai. Hereafter

we assume each validator can have only a single smart contract linked
to his stake for tracing his on-chain activity. A single entity controlling
multiple smart contracts can stake multiple instances each linked with a
separate smart contract. The value A can be zero if no smart contract
owner becomes a validator.

• Other Smart Contract Activity B: B is the aggregation of all smart
contract activity scores which are deployed on the chain but are not linked

4

Algorithm 1 Smart Contract Activity Score Calculation

1: window size = 1575(window = window size× epoch)
2: epoch = 32× block
3: for each epoch do
4:

5: Aepoch = 0
6:

7: Let TXcontract
epoch = {tx1, tx2, . . . , txki

} be the given contract’s transactions
8: happened during that epoch
9:

10: for txj ∈ TXcontract
epoch do

11: Aepoch = Aepoch + atxj

12: end for
13:

14: if i > window size then

15: Ascorei
contract = A

scorei−1

contract −
A

scorei−1
contract

window size +Aepoch

16: else
17: Ascorei

contract =
∑i

j=1 Aepochi

18: end if
19:

20: Output Ascorei
contract

21: end for

with any validator. We assume most active smart contract owners will be
motivated to become a validator although there definitely will be some
on-chain activity not linked with any validator. B can be zero only when
all smart contracts deployed on-chain are also associated with separate
validators or there is no on-chain activity at all.

• Asset Transfer Transactions Scores T: T is the aggregation of all
smart contract and asset transfer transaction activity scores calculated
based on the constant 21000 gas usage T =

∑
tx∈epoch 21000. T will be

zero if and only if there will zero transactions on-chain during that given
epoch.

For the given epoch e we define the Vi’s power as

Pmax
i = Te ·

EBi

S
+Ai

and we define the effective power as

Pi = Pmax
i · EBi

smax

where

• Ae
Vi

is the activity score assigned to the validator Vi for the epoch e. We
omit the index parameters e and V for brevity and simply use the notation
Ai.

5

• T is the sum of all transaction constant gas usage components: Te =
21000 ∗ N where N is the number of all transactions which have been
executed during the epoch e. Again we have removed the index component
e for bravity.

• smax is the staked amount of the Vi-th validator. The initial stake amounts
of all validators are equal.

• EBi is the effective balance of the Vi-th validator. The effective balance
is the validator’s initial staked amount smax minus all penalties which it
has got before the subject epoch.

• S is the sum of all effective balances: S =
∑

i∈1,...,n EBi.

In Ethereum PoS consensus algorithm, the validator’s power is basically
defined by his effective balance EBi.

2.5 Validator Selection Process

The selection process in Ethereum PoS is executed through a special shuffle and
select algorithm where the list of validators is first shuffled randomly, and then
a fresh randomness rand is chosen between the range 0 and MaxRand to check
if the equation

EBi

S
≥ rand

MaxRand

holds for the next validator in the shuffled list. If the condition holds, the next
validator is selected otherwise the selection algorithm moves on to check the
next validator in the shuffled list.

In our protocol, we take the following selection process. For the concrete
block

• list all N validators with P1, P2, . . . , PN powers respectively and compute
the overall effective power as P ′ =

∑N
i=1 P

′
i .

• Next randomly shuffle the list of validators and consider the list

P0

P
,
P1

P
,
P2

P
, · · · , PN

P

where P0 = 0 is a void validator added to the list for the sake of integrity

• Chose a random value x←−R [0, 1] from the range

• If x = 0 then select the first validator with the power P1, otherwise select
the k-th validator from the shuffled sorted list such that

k−1∑
i=0

Pk−1

P
< x ≤

k∑
i=0

Pk

P

6

It is important to note that in Ethereum, the top 100 smart contracts among
the millions deployed on-chain generate almost 25 percent of the overall chain
activity. Enabling these few sharks to be constantly selected as proposers would
put the decentralization of decision-making processes at a huge risk. So in future
versions of the protocol, we may also consider the validator selection process to
be executed through an alternative method using the mathematical Sigmoid
function with tuned parameters as follows:

{2 · 1

1 + e−1.5· Pi
MP

− 1} · si
s
≥ rand

MaxRand
· 0.62

where

1. MP is the maximum power of all validators: MP = max{P1, P2, . . . , Pn}

2. s is the actual staking amount to be equal 8192

3. Pi is the power of the i-th validator computed as above.

4. si is the effective balance of the i-th validator.

5. The sigmoid function is tuned through certain parameters to enable a
smooth empowerment of small validators over the super powerful valida-
tors.

2.6 Reward Distribution

In our blockchain certain amounts of tokens are constantly burned and minted in
parallel to ensure concrete economic dynamics. New tokens are minted through
two separate and logically independent processes. The first process creates new
tokens out of fresh air no matter of the existing on-chain activity volume. The
second process is linked to the validators activity and will mint new tokens
depending on the gas fees spent by the active validators on their activity.

2.6.1 Minting New Tokens Out of Fresh Air

This process is designed to ensure a minimum yearly return of interest for val-
idators depicted as is listed below.

• Number of validators 4096: ROI = 7 percent

• Number of validators 8192: ROI = 4.95 percent

• Number of validators 12888: ROI = 3.9 percent

• Number of validators 16384: ROI = 3.496 percent

• Number of validators 20480: ROI = 3.127 percent

This minting process depends only on the number of staked tokens and
is proportional to the square root of the number of validators. The number
of overall minted tokens per year will be controlled by a distribution formula
yielding the expected minimum number of tokens as follows.

M = c ·
√
S

7

The constant c is derived through the following reasoning. New tokens will
be minted per each epoch and there are Ne = 82181.25 epochs per year like in
Ethereum. Assuming the effective balance of each validator to be EBi = 8192
tokens and the initial number of validators is NV = 4096 and the target ROI is
7%, we can assume the expected number of newly issued tokens in gwei is to be

Me = 4096 · 8192 · 109 · 0.07

Hence we should have

c ·Nv · 8192 · 109√
Nv · 8192 · 109

·Ne = Me

This argument yields to the constant value c = 156. This issuance process
is similar to the Ethereum issuance logic with the single deviation that we start
from a fixed expected ROI target for the initial numbers of starting validators.

2.6.2 Minting Based on the Validators Activty

This process incorporates the main logic of PoSA consensus algorithm and pro-
vides the main logic behind the activity rewarding process.
First, let’s sum up all gas fees spent on all transactions on-chain and interpret
the result as a sum of four independent arguments as

F = A+B + T + t

Here A is the gas usage of smart contracts linked with active validators (minus
the constant part linked with each tx), B is the gas usage of smart contracts not
associated with any validator, T is the aggregation of the constant gas usage
argument equal to 21000, and t is the sum of tips of all considered transactions.

We will give tips t to the proposer in the Geth. The amount A + B + T
is totally burned in Geth (execution layer). In Prysm (consensus layer), the
reward should be shared among the proposer and the committee. Step by step
description is given below.

1. We will overall mint M = m+Pm new tokens where m = K ·
√
D and Pm

should be equal to A+ T . K is a specially selected constant which yields
to the expecting ROI as discussed below.

2. In execution layer (Geth), we will burn A+ T +B

3. In consensus layer (Prysm) we will meant the above mentioned A+ T .

4. This means B amount will be burned totally, m will be created from
scratch, which implies that supply equilibrium will be settled when B
reaches to m.

5. Next, we can calculate what should be the base fee and the load of blocks
resulting in equilibrium.

6. We can calculate what should be the base fee at 50 percent load resulting
in equilibrium. Next, taking this number as a guide, we can figure out
which base fee amount to start from, so the base fee change formula will
lead to equilibrium at 50 percent load

8

7. Given an initial number of validators to be 4096, and the staked amount
to be 4096 * 8192, to provide 7 percent, we can fix m = 4096·8192·7

100 which
in turn means we should mint m

2628000 = 0.8937 FTN per block.

8. Remember thatm = c×64
√
D so we can calculate c = 4096·8192·0.07

64·
√
4096·8192 = 6.34

9. Fixing the constant c = 6.33, this will

10. Note that the coefficient c in turn will depend on a few other factors and
will encounter penalty strategies. This will impact the overall minting
amount.

11. Base Fee Calculation Methodology: The goal is figuring out a formula,
which depending on the block load will result in meaningful rewards.
For half-load traffic (15M gas per block) we want transaction fees to be
equal to 1/8 of the minted amount of m. fee = 15M ∗ basefee

In Ethereum, the burning rate is dynamically controlled based on the band-
width. Each block capacity is 30M gas usage. If the block is half filled, the
base gas fee is increased up to 12 percent compared to the price in the previous
block. If the capacity is low, so the blocks are mostly empty, the base gas fee is
decreased up to 12 percent. In our PoSA implementation we will follow to the
same logic to maintain the base fee dynamics.

Apart of minting new token

Algorithm 2 Base Fee reference calculation

1: window size = 1575(window = window size× epoch)
2: epoch = 32× block
3: for each epoch do
4:

5: fepoch = 0
6:

7: Let TXcontract
epoch = {tx1, tx2, . . . , txki} be the given contract’s transactions

8: happened during that epoch
9:

10: for txj ∈ TXcontract
epoch do

11: fepoch = fepoch + ftxj

12: end for
13:

14: if i > window size then
15: fepoch = fepochi−1 −

window size+ fepoch
16: else
17: Ascorei

contract =
∑i

j=1 Aepochi

18: end if
19:

20: Output Ascorei
contract

21: end for

Remember the proposer gets (A + T) and the committee of 128-4096 people
will get 7/8 of the reward.

9

3 The Incentive Layer

3.1 Block Validation

3.2 Slashing and Validator Penalties

The system parameters in the consensus algorithm are

• D - The overall deposited amount

• S - The circulating supply

• L - Maximum number of validators

• s - Stake quote

• B - Burned amount

• I - Number of new issued tokens. In Ethereum, the issuance amount is
calculated as I = cF

√
D.

• y - The yield. y = I
D

• b - Burn rate. Note that b = B
S

• d - Deposit rate: d = D
S

3.3 Rewards

The overall reward R = M1 +M2 is distributed among the proposer and sync
committee according to the following formulas. First we define Mt = (A +

T)
∑

P ′
i∑

Pi
where the Pi and P ′

i are the i-th validators power and effective power

respectively. The proposer rewards is next calculated as

M2 = Mt

(
2

56
·
∑

SRi∑
SRm

+
54

56
·
∑

ARi∑
ARm

)

)
TODO

• Proposer Rewards

• Sync Committee Rewards

• Attester Rewards

• Discuss the proposer rewards logic and how it gets less with a low quality
attesters

• Burn in Geth and Mint in Prysm.

•

10

Base rewards

Validator base reward

Active balance is

B =

n∑
i=0

ebi, (1)

where B - active balance, n - number of validators and ebi - effective balance of
i’th validator.

Base reward per increment is

BRinc =
inc ∗ f√

B
, (2)

where inc = 1 ∗ 19 - effective balance increment in gwei and f = 156 - base
reward factor.

Base reward of i’th validator is

BRi =
ebi
inc
∗BRinc =

ebi ∗ f√
B

, (3)

where ebi - effective balance of i’th validator.
Total base reward per epoch is

BRtotal =

n∑
i=0

BRi =
B ∗ f√

B
(4)

Proposer base reward

Total activity is

A =

n∑
i=0

eai (5)

where eai - effective activity of i’th validator.
Base proposer reward is

BPR =
(A+ T) ∗ bf
W ∗ n ∗ gwei

, (6)

where T - transactions gas, bf - average base fee during activity period (in wei),
W = 1575 - activity period and gwei = 1 ∗ 19.

Sync proposer reward

Sync committee reward weight depending on i’th sync committee member vote
is

Ws(i) =

{
2, if i’th validator voted

0, if i’th validator didn’t vote
(7)

We can calculate proposer reward per sync committee vote in two ways:

11

1. First method:

Proposer reward per sync committee vote in block is

SPRvote(i) =
BPR ∗Ws(i)

WΣ ∗ s ∗ cs
, (8)

where WΣ = 56 - reward weight denominator, s = 32 - slots per epoch
and cs = 512 - sync committee size.

2. Second method:

Proposer reward per sync committee vote in block is

SPRvote(i) =
BPR ∗Ws(i)

WΣ ∗ cs
, (9)

where WΣ = 56 - reward weight denominator and cs = 512 - sync com-
mittee size.

In this case sync proposer reward is 32 times more then in first
case.

Therefore, sync proposer reward per block is

SPRblock(j) =

cs∑
i=0

SPRvote(i) (10)

1. First method:

SPRblock(j) =

cs∑
i=0

BPR ∗Ws(i)

WΣ ∗ s ∗ cs
, (11)

where WΣ = 56 - reward weight denominator, s = 32 - slots per epoch
and cs = 512 - sync committee size.

2. Second method:

SPRblock(j) =

cs∑
i=0

BPR ∗Ws(i)

WΣ ∗ cs
, (12)

where WΣ = 56 - reward weight denominator and cs = 512 - sync com-
mittee size.

Eventually, sync proposer reward per epoch is

SPRepoch =

s∑
j=0

SPRblock(j) (13)

1. First method:

SPRepoch =

s∑
j=0

cs∑
i=0

BPR ∗Ws(i)

WΣ ∗ s ∗ cs
, (14)

where WΣ = 56 - reward weight denominator, s = 32 - slots per epoch
and cs = 512 - sync committee size.

12

2. Second method:

SPRepoch =

s∑
i=0

cs∑
i=0

BPR ∗Ws(i)

WΣ ∗ cs
, (15)

where WΣ = 56 - reward weight denominator and cs = 512 - sync com-
mittee size.

So, maximum sync proposer reward per epoch is

1. First method:

MAX SPRepoch =
VWs

WΣ
∗BPR, (16)

where VWs = 2 - voted sync reward weight, WΣ = 56 - reward weight
denominator,

2. Second method:

MAX SPRepoch =
VWs

WΣ
∗BPR ∗ s, (17)

where VWs = 2 - voted sync reward weight, WΣ = 56 - reward weight
denominator and cs = 512 - sync committee size.

Attestation proposer reward

Timely head reward weight for i’th validator is

Wth(i) =

{
14, if i’th validator voted

0, if i’th validator didn’t vote
(18)

Timely source reward weight for i’th validator is

Wts(i) =

{
14, if i’th validator voted

0, if i’th validator didn’t vote
(19)

Timely target reward weight for i’th validator is

Wtt(i) =

{
26, if i’th validator voted

0, if i’th validator didn’t vote
(20)

We have two methods:

1. First method:

Attestation reward of i’th validator is

ARi = BRi ∗
Wth(i) +Wts(i) +Wtt(i)

WΣ
, (21)

where WΣ = 56 - reward weight denominator.

Number of attesters per block is

acs =
n

s
(22)

13

where n - number of active validators and s = 32 - slots per epoch.

Therefore, total actual attestation reward in block is

ARblock(j) =

acs∑
i=0

ARi =

acs∑
i=0

BRi ∗
Wth(i) +Wts(i) +Wtt(i)

WΣ
, (23)

and maximum attestation reward in block is

MAX ARblock(j) =

acs∑
i=0

BRi ∗
VWth + VWts + VWtt

WΣ
, (24)

where VWth = 14 - voted timely head reward weight, VWts = 14 - voted
timely source reward weight, VWtt = 26 - voted timely target reward
weight and WΣ = 56 - reward weight denominator.

Total epoch attestation reward in this case is

ARepoch =

s∑
j=0

ARblock(j) =

s∑
j=0

acs∑
i=0

BRi ∗
Wth(i) +Wts(i) +Wtt(i)

WΣ
,

(25)
where s = 32 - slots per epoch.

So, attestation proposer reward in block is

APRblock(j) =
ARblock(j) ∗ (VWth + VWts + VWtt)

MAX ARblock(j) ∗WΣ
∗BPR, (26)

and attestation proposer reward in epoch is

APRepoch =

s∑
j=0

APRblock(j) (27)

In case if all validators perform their duties, attestation proposer reward
is

MAX APRepoch =

s∑
j=0

(VWth + VWts + VWtt)

WΣ
∗BPR, (28)

because APblock(j) is equal to MAX ARblock(j).

2. Second method:

In second method we don’t take validators’ base reward into account, so
we can calculate only their performed duties

Performed duties of i’th validator

PD(i) =
Wth(i) +Wts(i) +Wtt(i)

WΣ
, (29)

where WΣ = 56 - reward weight denominator.

Max performed duties by validator is

MAX PD =
VWth + VWts + VWtt

WΣ
, (30)

14

where VWth = 14 - voted timely head reward weight, VWts = 14 - voted
timely source reward weight, VWtt = 26 - voted timely target reward
weight and WΣ = 56 - reward weight denominator.

Number of attesters per block is

acs =
n

s
(31)

where n - number of active validators and s = 32 - slots per epoch.

Performed duties in block is

PDblock(j) =

acs∑
i=0

PD(i) =

acs∑
i=0

Wth(i) +Wts(i) +Wtt(i)

WΣ
, (32)

and maximum performed duties in block is

MAX PDblock = acs ∗MAX PD (33)

Therefore, performed duties in epoch is

PDepoch =

s∑
j=0

PDblock(j) =

acs∑
i=0

Wth(i) +Wts(i) +Wtt(i)

WΣ
, (34)

and maximum performed duties in epoch is

MAX PDepoch = s∗MAX PDblock = s∗acs∗MAX PD = n∗MAX PD,
(35)

where n - number of active validators and s = 32 - slots per epoch.

So, attestation proposer reward in block in this case is

APRblock(j) =
PDblock(j) ∗ (VWth + VWts + VWtt)

MAX PDblock ∗WΣ
∗BPR, (36)

and attestation proposer reward in epoch is

APRepoch =

s∑
j=0

APRblock(j) (37)

In case if all validators perform their duties, attestation proposer reward
is

MAX APRepoch =
(VWth + VWts + VWtt)

WΣ
∗BPR ∗ s, (38)

because PDblock(j) is equal to MAX PDblock.

Minting

If all validators’ duties are performed proposer reward per block is

MAX PRblock = MAX SPRblock +MAX APRblock (39)

15

MAX PRblock =
(VWth + VWts + VWtt + VWs)

WΣ
∗BPR = BPR (40)

Maximum proposer reward per epoch is

MAX PRepoch = MAX SPRepoch +MAX APRepoch (41)

MAX PRepoch =
(VWth + VWts + VWtt + VWs)

WΣ
∗BPR ∗ s = BPR ∗ s

(42)

And total minted amount during epoch is

MINTEDepoch = MAX PRepoch +BRtotal = BPR ∗ s+ B ∗ f√
B

(43)

References

[1] Ethereum Consensus Layer Documentation.
https://eth2book.info/bellatrix/part2/incentives/penalties/

[2] Ethereum Technical Overview. The Incentive Layer. Slashing:
https://eth2book.info/bellatrix/part2/incentives/slashing/

16

	Introduction
	Design Rational
	Consensus Mechanism
	Staking
	Validator Activity Score Calculation
	Validator Power
	Validator Selection Process
	Reward Distribution
	Minting New Tokens Out of Fresh Air
	Minting Based on the Validators Activty

	The Incentive Layer
	Block Validation
	Slashing and Validator Penalties
	Rewards

