
Security Assessment

Bahamut Execution and
Consensus
CertiK Assessed on Aug 1st, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

1 Major 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

5 Medium 5 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

9 Minor 6 Resolved, 3 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

15 Informational 14 Resolved, 1 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY BAHAMUT EXECUTION AND CONSENSUS

CertiK Assessed on Aug 1st, 2023

Bahamut Execution and Consensus

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Chain, Chain-Consensus

ECOSYSTEM

Ethereum (ETH)

METHODS

Manual Review, Static Analysis

LANGUAGE

Golang, Solidity

TIMELINE

Delivered on 08/01/2023

KEY COMPONENTS

N/A

CODEBASE
https://github.com/fastexlabs/bahamut-execution

https://github.com/fastexlabs/bahamut-consensus

https://github.com/fasttoken1/fasttoken-distribution-eth-

View All in Codebase Page

COMMITS
af75d5f6c6ab5a33f6a1ac86c5c443e7be943cf1

33b75d4e162179d360e60ac88bb4289293b530a6

1f2392be6927c2227a0061a5c7c9f7c937545971

View All in Codebase Page

30
Total Findings

25
Resolved

0
Mitigated

0
Partially Resolved

5
Acknowledged

0
Declined

https://github.com/fastexlabs/bahamut-execution
https://github.com/fastexlabs/bahamut-consensus
https://github.com/fasttoken1/fasttoken-distribution-eth-contracts/tree/master/bahamut
https://github.com/fastexlabs/bahamut-execution/commit/af75d5f6c6ab5a33f6a1ac86c5c443e7be943cf1
https://github.com/fastexlabs/bahamut-consensus/commit/33b75d4e162179d360e60ac88bb4289293b530a6
https://github.com/fasttoken1/fasttoken-distribution-eth-contracts/tree/1f2392be6927c2227a0061a5c7c9f7c937545971

TABLE OF CONTENTS BAHAMUT EXECUTION AND CONSENSUS

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Overview

Findings

FTN-04 : Initial Distribution Centralization Risk in Contract `FTNVault`

322-01 : Missing `Contract` When Processing Deposit Log

DEP-02 : Potentially Override The Current Owner Of Contract

EVM-01 : Missing Memory Gas Usage in Activity When Adding It to StateDB in Function `CallCode()`

PRO-01 : Logical Flaw in Function `filter()` Could Invoke Function from A Different Version

SYN-01 : Incorrect Generation of `randomByte` in Function `NextSyncCommitteeIndicesFastexPhase1()`

ACT-01 : Missing nil Check of Variable `Activity`

ATT-01 : Missing Check of `proposerRewardDenominator` Could Possibly Lead to Division by Zero

COR-02 : Potential Overflow And Underflow

FTN-01 : Potential Initialization By Frontrunner

FTN-02 : Missing Receive Function

FTN-03 : Discussion on The Mint Workflow with Function `processBurnTransaction()`

MAI-01 : Mainnet Could Possibly Be Misconfigured

PRP-01 : The Output Block Does Not Contain `ActivityChanges`, `TransactionsCount`, `BaseFee`, And
`ExecutionHeight`

REW-02 : Possibly Incorrect Calculation of Base Proposer Reward

33B-01 : Typo in Variable Names And Function Names

3B8-01 : Discussion on Value of `SigmoidLimit`

BEA-01 : Typo in Error Messages

COB-02 : Discussion on The Use of The Sigmoid Function in Block Proposer and Sync Committee Members
Selection

COB-03 : Discussion on Two Implementations of Block Proposer and Sync Committee Selection in Different
Versions

COE-03 : Inconsistency Between Implementation and Whitepaper

TABLE OF CONTENTS BAHAMUT EXECUTION AND CONSENSUS

DEO-02 : Discussion on Contract Registration with Validators

DES-02 : Discussion on Inconsistency Between Deposit Contract and Its Binding

GLOBAL-01 : Current Version Does Not Contain Patch for MEV-Boost Attack

REW-01 : Discussion on The Calculation of `BaseProposerReward`

STF-01 : Typo in The Codebase of Execution Layer

STT-02 : Typo in The Codebase of Consensus Layer

VAL-02 : Typo in Function Name `isEligibileForActivationQueue()`

VAL-03 : Code Simplification in Function `RandomBytes()`

VAL-04 : Inconsistency Between Implementation And Whitepaper on The Calculation of Validator's Power

Appendix

Disclaimer

TABLE OF CONTENTS BAHAMUT EXECUTION AND CONSENSUS

CODEBASE BAHAMUT EXECUTION AND CONSENSUS

Repository

https://github.com/fastexlabs/bahamut-execution

https://github.com/fastexlabs/bahamut-consensus

https://github.com/fasttoken1/fasttoken-distribution-eth-contracts/tree/master/bahamut

Commit

af75d5f6c6ab5a33f6a1ac86c5c443e7be943cf1

33b75d4e162179d360e60ac88bb4289293b530a6

1f2392be6927c2227a0061a5c7c9f7c937545971

3226f8330911cb8df77e775f0155b335ba771bd8

cffbd04e743737989e44cf0ebae70fd353c5a539

716ea69939139eab9f45b4c68347eb67de492bea

b46a400918dd7993f67ac81b8b06a010173a9d67

CODEBASE BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/bahamut-execution
https://github.com/fastexlabs/bahamut-consensus
https://github.com/fasttoken1/fasttoken-distribution-eth-contracts/tree/master/bahamut
https://github.com/fastexlabs/bahamut-execution/commit/af75d5f6c6ab5a33f6a1ac86c5c443e7be943cf1
https://github.com/fastexlabs/bahamut-consensus/commit/33b75d4e162179d360e60ac88bb4289293b530a6
https://github.com/fasttoken1/fasttoken-distribution-eth-contracts/tree/1f2392be6927c2227a0061a5c7c9f7c937545971
https://github.com/fastexlabs/bahamut-consensus/commit/3226f8330911cb8df77e775f0155b335ba771bd8
https://github.com/fastexlabs/bahamut-consensus/commit/cffbd04e743737989e44cf0ebae70fd353c5a539
https://github.com/fastexlabs/bahamut-execution/commit/716ea69939139eab9f45b4c68347eb67de492bea
https://github.com/fasttoken1/fasttoken-distribution-eth-contracts/tree/b46a400918dd7993f67ac81b8b06a010173a9d67

AUDIT SCOPE BAHAMUT EXECUTION AND CONSENSUS

180 files audited 1 file with Acknowledged findings 17 files with Resolved findings 162 files without findings

ID Repo File SHA256 Checksum

FTN

fasttoken1/fasttoken-

distribution-eth-

contracts

bahamut/FTNVault.sol
8ccc4b1a0687a2919b0315fc77c428b167

43ccfc8f96261a561353c8f414ae64

ACT
fastexlabs/fastexchain-

consensus

beacon-chain/execution/activitie

s_processing.go

6ebea7378ccc959d1cef61cc0704ce3eed

8258cac82a7d97fd98c7fa24da6ba2

NOD
fastexlabs/fastexchain-

consensus
beacon-chain/node/node.go

3ad29f7da17f4546b190a1d263ff8d39925

566769c790f31f93c704842e9bcaf

STR
fastexlabs/fastexchain-

consensus

beacon-chain/rpc/apimiddlewar

e/structs.go

632ee6f9d1a1582465231b9d92dd0ffaa1

079b729478431c635f4b077327cae8

ACV
fastexlabs/fastexchain-

consensus

beacon-chain/core/blocks/activiti

es.go

b9667613e95bafbe79fdf15f64607cbb0c6f

15fb9254984a332b5c2ccdce63e2

SYN
fastexlabs/fastexchain-

consensus

beacon-chain/core/altair/sync_c

ommittee.go

36bf335748e4dc3c581cb47097fa4574eaf

5adc9aa82ae1d217479b2f131e22e

VAT
fastexlabs/fastexchain-

consensus

beacon-chain/core/helpers/valid

ators.go

4411a07b67fb7fbc27d42eec9901c23270

9c218a8143e9bd37dd402f32f04829

ATT
fastexlabs/fastexchain-

consensus

beacon-chain/core/fastex-phase

1/attestation.go

f192c3d93d83a168d384083a202817c101

b5daefa192b8f98e30ab42a6dce01f

REW
fastexlabs/fastexchain-

consensus

beacon-chain/core/fastex-phase

1/reward.go

40aa46c32d5fda20cdc0517bc3a8939f1d

db21a363870f14565f08ac9f024ba2

FLA
fastexlabs/fastexchain-

consensus
config/features/flags.go

b7c8e7f728b17a9d292876a9bd63c83483

5ed47345c924ce7054ec70d9adaf0e

CON
fastexlabs/fastexchain-

consensus
config/features/config.go

7065ecea4c87a4b5fd304d2c4d35fdca20

0c5a5c23192134f8a8fef7dfb6b165

COF
fastexlabs/fastexchain-

consensus
config/params/config.go

02f9a809de8d45c974b0536254451e3c0d

2e1e4991ab5b938a8ae96011362a91

AUDIT SCOPE BAHAMUT EXECUTION AND CONSENSUS

ID Repo File SHA256 Checksum

MAI
fastexlabs/fastexchain-

consensus

config/params/mainnet_config.g

o

700b04a4a213e41b43b546e807a259ffc5

1396fec3553105c274dd7dfb68fc22

WEB
fastexlabs/fastexchain-

consensus

validator/keymanager/remote-w

eb3signer/v1/web3signer_types.

go

413009e417bc42ccaa8d76a8d4a79de6e

698e34aa62c1826fb4ff5592b287c4d

CUS
fastexlabs/fastexchain-

consensus

validator/keymanager/remote-w

eb3signer/v1/custom_mappers.

go

9799aec08355d1545d470b29cbf43a110b

e886e34225c8075ebaad3145b3f47e

EVM
fastexlabs/fastexchain-

execution
core/vm/evm.go

9a46fa74670d2380eb8f9050ea2919fc399

8438744825a8cd7757424cdb4e641

STE
fastexlabs/fastexchain-

execution
core/state/state_object.go

bfa92f906a29579f32cb7a711896feb45ce

7119e2105c6456fc66fdf8fb1b995

STF
fastexlabs/fastexchain-

execution
core/vm/stateful_contracts.go

84a5da62ef44b1b4f9a314bfe910cd1ba6a

1174e5dfcdf0225af68bc639829d7

SER
fastexlabs/fastexchain-

consensus

beacon-chain/execution/service.

go

151dda0e8f4b337e4a554da01820e4e64

9eefd5261864fff7221d7c9e110433d

OPT
fastexlabs/fastexchain-

consensus

beacon-chain/execution/options.

go

0cd9c3d5b966b651c09e3f4af8188a4714

891acc89278529ed0221d5ac2bcc47

LOG
fastexlabs/fastexchain-

consensus

beacon-chain/execution/log_pro

cessing.go

b21e1f58dfe1c76561e18cd18c29eaaff95

6a2daf4585ec2bb1543854153ef15

CHE
fastexlabs/fastexchain-

consensus

beacon-chain/execution/check_t

ransition_config.go

4484c25effe87945d7bba007f26dac64edb

1fbec031a1d88efc8cf0d51b84d5f

SEV
fastexlabs/fastexchain-

consensus
beacon-chain/p2p/service.go

e1a0f5a9ea64286db3f926b9ca38891794

307a74b1ba63c648769d716125aaa0

OPI
fastexlabs/fastexchain-

consensus
beacon-chain/p2p/options.go

03871de7ba8ef05f58cca40bd6016e1714

a799bcd26d67aa2cabd80370f46561

PUB
fastexlabs/fastexchain-

consensus
beacon-chain/p2p/pubsub.go

0c62160d869dd24759078e65cff9a78126

6b9ddb749508016011e21bf0f87275

UTI
fastexlabs/fastexchain-

consensus
beacon-chain/p2p/utils.go

48a3b12b7b2400e9fd5fc9773b2b8013fba

5ac960622a1fb752016c83888de10

AUDIT SCOPE BAHAMUT EXECUTION AND CONSENSUS

ID Repo File SHA256 Checksum

EXE
fastexlabs/fastexchain-

consensus

beacon-chain/db/kv/execution_c

hain.go

83e44958a77fe478f86ccbd4d6d858eda6

ca8d56dfc752528ed76af9ef4b72ec

FIN
fastexlabs/fastexchain-

consensus

beacon-chain/db/kv/finalized_bl

ock_roots.go

74ce8cd3facdac138b7d0526cc04ec6fda5

0251d8ff9aae10065ae4c2b422e67

GEN
fastexlabs/fastexchain-

consensus
beacon-chain/db/kv/genesis.go

8c6ca04f11e56c0dfdae0b349767b7a1cd

549e12ee34174085d33ec39ea4018f

STA
fastexlabs/fastexchain-

consensus
beacon-chain/db/kv/state.go

6c0aeb9e82bd9d8954831ad74dbf2a387c

256b13a1274ca523bdc311f950753a

BLO
fastexlabs/fastexchain-

consensus
beacon-chain/db/kv/blocks.go

34b6e0429e89865b73d81f79b36f4bfc225

0e473bdf71046eace76da4c6e30e7

PEN
fastexlabs/fastexchain-

consensus

beacon-chain/sync/pending_blo

cks_queue.go

17d0d84fea6b679f3e085de5d3eddbb010

16a42f391cc90938fdb2f73b9a96f0

MET
fastexlabs/fastexchain-

consensus
beacon-chain/sync/metrics.go

a8f5c0d119186fe04a47f739d5292a6ff6be

1be710b0ff45dd28c2dcae6c06d3

RPC
fastexlabs/fastexchain-

consensus

beacon-chain/sync/rpc_beacon_

blocks_by_range.go

b80d4d312e96f1954c827953a2deb9ed7d

51ab397a18d70807a77c7079eecb8c

VAL
fastexlabs/fastexchain-

consensus

beacon-chain/sync/validate_bea

con_blocks.go

5e425132fbb70d71d7c3277e550dc3de19

7f640c4948e332f047635b19d68a79

ROU
fastexlabs/fastexchain-

consensus

beacon-chain/sync/initial-sync/ro

und_robin.go

e5c3f980a65c802c9e099f69ce173d75f40

79fe19db2117ed1e497b2bf7aabea

BLC
fastexlabs/fastexchain-

consensus

beacon-chain/sync/initial-sync/bl

ocks_fetcher_utils.go

d941b911fa79c5dffc9c9d0a949fe3ba656

1e17a850d63e831609a15a35cc523

SEI
fastexlabs/fastexchain-

consensus
beacon-chain/rpc/service.go

29ef1b72db1644517aba4914d48513af32

89d84feebff33541233f9ece322cef

FET
fastexlabs/fastexchain-

consensus

beacon-chain/rpc/statefetcher/fe

tcher.go

337c9e155c0e291def7f90047622bdb0e9

278c160077b03c384d34417e38d4ce

VAI
fastexlabs/fastexchain-

consensus

beacon-chain/rpc/eth/validator/v

alidator.go

ed349ba6bcf5fc457a73788f61428a04f8b

3d4b0537b5683aa63f6196a6bc518

VAD
fastexlabs/fastexchain-

consensus

beacon-chain/rpc/eth/beacon/val

idator.go

10e30f88cc4d8adbce6208af6b6ddc974a

420196d052d7f232de0eb909087452

AUDIT SCOPE BAHAMUT EXECUTION AND CONSENSUS

ID Repo File SHA256 Checksum

BLK
fastexlabs/fastexchain-

consensus

beacon-chain/rpc/eth/beacon/bl

ocks.go

bcc3981ae78a63b05b36b0d89b912260ff

af9e03b531d5c8202a089fc4d10c30

SEE
fastexlabs/fastexchain-

consensus

beacon-chain/rpc/prysm/v1alpha

1/validator/server.go

b82ea7ab674e6df8d3a29103324191aaf8

15c77ffc1ad2d4d6fa25cf32172842

PRO
fastexlabs/fastexchain-

consensus

beacon-chain/rpc/prysm/v1alpha

1/validator/proposer_execution_

payload.go

c9c7c882352040409734297ad70271d14

6772a8fdb692a2482a06bb134c679b6

PRP
fastexlabs/fastexchain-

consensus

beacon-chain/rpc/prysm/v1alpha

1/validator/proposer_altair.go

4bb85988817e8b4c72fadf929da2e98d3e

056691dfa5caf2656d6132399f993e

PRS
fastexlabs/fastexchain-

consensus

beacon-chain/rpc/prysm/v1alpha

1/validator/proposer.go

5a702c52b1f3d2dcf6bc6ab36a15609566

14db2c3fceeb14f7d8ed1a4bc8b147

PRE
fastexlabs/fastexchain-

consensus

beacon-chain/rpc/prysm/v1alpha

1/validator/proposer_bellatrix.go

8e79c63f42f1e8a52bf54b9a2ed3b27b039

345c76125edfc855c4c89209b7480

PRR
fastexlabs/fastexchain-

consensus

beacon-chain/rpc/prysm/v1alpha

1/validator/proposer_activities.g

o

050c311cd2c39993daf994a2d72f432e9b

19693f0ce972aeca238d8ebeff8c32

BLS
fastexlabs/fastexchain-

consensus

beacon-chain/rpc/prysm/v1alpha

1/beacon/blocks.go

f08a09f7624816a8537722b2c27622bf26e

317e31df5d10b34a6e5ddb1656433

SEC
fastexlabs/fastexchain-

consensus

beacon-chain/deterministic-gene

sis/service.go

2456dc966d83b3f364ded15642aee91e53

e36b259721e543042fdb90a1e1ba70

PRC
fastexlabs/fastexchain-

consensus

beacon-chain/monitor/process_

block.go

46142f6a5337bc5de1957610490403f464f

565de959833247d8497f6fa921cea

OPO
fastexlabs/fastexchain-

consensus
beacon-chain/builder/option.go

70f970cfaaee8b3c8ba1560eac9d4b9e23

b4202d033ffa33492590b5b97be8c0

SEB
fastexlabs/fastexchain-

consensus
beacon-chain/builder/service.go

46c4b52e1addaed45bd595d30db44e14d

dde5747d143227220a13c9c6efdcf95

LOA
fastexlabs/fastexchain-

consensus

beacon-chain/cache/activitycach

e/log.go

cd79e6f7ecd2585fe8300c72847809aefd3

52410093c8b56fddd9f2010791215

ACI
fastexlabs/fastexchain-

consensus

beacon-chain/cache/activitycach

e/activity_change_cache.go

234579e41696f2d64c0e4cc1d9c9cb2f14c

72d1586b420fa43d24d049410c643

AUDIT SCOPE BAHAMUT EXECUTION AND CONSENSUS

ID Repo File SHA256 Checksum

INT
fastexlabs/fastexchain-

consensus
beacon-chain/state/interfaces.go

5c02e9aff01be7ff05dd2ee82d7d8c20a0d

09add0b787d19361e2615d8fd23ae

FIE
fastexlabs/fastexchain-

consensus

beacon-chain/state/fieldtrie/field

_trie_helpers.go

05a8042f689df3e2acd72b59b870e80adc

e4655735129bfa94400c2841d88adc

REA
fastexlabs/fastexchain-

consensus

beacon-chain/state/state-native/

readonly_contracts.go

f2e22a10a8c0550473bd3b2d5c7bd82288

ab4f6bd5182a15179b4d5cfb814700

GET
fastexlabs/fastexchain-

consensus

beacon-chain/state/state-native/

getters_misc.go

3c21bd3fed4f9a4c69cb1d53fe3eb183480

0e22d22562c5d30b88e820b8b30c2

BEC
fastexlabs/fastexchain-

consensus

beacon-chain/state/state-native/

beacon_state_minimal.go

e1a08feb54adb1d6e595cde4bcea3ac8c9

7eb17de065b111296e5b8ed450c4e6

STT
fastexlabs/fastexchain-

consensus

beacon-chain/state/state-native/

state_trie.go

16801728ad6c50d0b8e297bb008663340

d8a5ea5239ae7900ed6362a77dc2121

TYS
fastexlabs/fastexchain-

consensus

beacon-chain/state/state-native/t

ypes.go

59166a677563e7b7e19089e8b9333f3f35

3bb09fbf06520d92910d40d18b2aee

SET
fastexlabs/fastexchain-

consensus

beacon-chain/state/state-native/

setters_eth1.go

963505ab4996beae6c13f74eb39978fa13

3c8a9eb51ea29800aef2ce17efe0f2

GEE
fastexlabs/fastexchain-

consensus

beacon-chain/state/state-native/

getters_validator.go

78592781fe01eda0a4347c1602aa2aa90d

ad27a0443b7756c10134e1f54cf38b

BEO
fastexlabs/fastexchain-

consensus

beacon-chain/state/state-native/

beacon_state_mainnet.go

4c05a86824b19dcce1b72f4f3130da7496

0980767b58e17aea4c7e88d1fca20f

SES
fastexlabs/fastexchain-

consensus

beacon-chain/state/state-native/

setters_validator.go

774a34b9a2b3b2a1516b20f3849237858

1e999b67ec2f207f3c2776fb982d36c

GER
fastexlabs/fastexchain-

consensus

beacon-chain/state/state-native/

getters_eth1.go

f173d4eb60fc135b22a66259fedb305a6e6

cba7303faea6aba3a33672d544689

RED
fastexlabs/fastexchain-

consensus

beacon-chain/state/state-native/

readonly_validator.go

f2eeb403e604cfbe15e99d0d180e6950de

e60629dab28f7fe574e621840ca685

GES
fastexlabs/fastexchain-

consensus

beacon-chain/state/state-native/

getters_state.go

384b118c475e8f61299fedac2e69bd647c

ad680c2cfff6cee2d826477a66c8eb

HAS
fastexlabs/fastexchain-

consensus

beacon-chain/state/state-native/

hasher.go

c183e1eb287bfc18d785cae56e1782fea9

1bc90372ada4ae9dd9b17ff13c9ec0

AUDIT SCOPE BAHAMUT EXECUTION AND CONSENSUS

ID Repo File SHA256 Checksum

GEI
fastexlabs/fastexchain-

consensus

beacon-chain/state/genesis/gen

esis.go

006052100fd17a956ce78038f464bb5810

dfbe872a213719f43533e4a989d0a3

REP
fastexlabs/fastexchain-

consensus

beacon-chain/state/stategen/rep

lay.go

a5f3a08be5bdd1631a68ffe6a827b9d986

55728fff825a9d6bbe75700623c10f

HIS
fastexlabs/fastexchain-

consensus

beacon-chain/state/stategen/hist

ory.go

9cada2e728f3a9fec1005dff57bf6e0c6e28

85de484b9fa68cbbbbc5a9fbfa38

GEA
fastexlabs/fastexchain-

consensus

beacon-chain/state/stategen/get

ter.go

e07622cb36d73a7c493072bb0aef5ced87

00d899d69efe64bd4940b2bb99b5a8

VAA
fastexlabs/fastexchain-

consensus

beacon-chain/state/stateutil/vali

dator_root.go

66efb9446e661b543fc85360f08fbac0f678

bc4080817949239d51d2711ce4a6

FIL
fastexlabs/fastexchain-

consensus

beacon-chain/state/stateutil/field

_root_validator.go

1b06c6858d910a4c0231bbc51bb94e3c9

a9e11e435b578c91a3678f65d4032b3

COR
fastexlabs/fastexchain-

consensus

beacon-chain/state/stateutil/cont

racts_root.go

5c6579fe9ae06af3ba3ad7fa52c82ee6ee3

9c1dac2adcead7486a6e632855d29

FID
fastexlabs/fastexchain-

consensus

beacon-chain/state/stateutil/field

_root_contracts.go

79f4968208cb3ad9b7a6ba1913f4ae070ef

9baead3c8b016a7b2589b2a9d540d

COA
fastexlabs/fastexchain-

consensus

beacon-chain/state/stateutil/cont

racts_map_handler.go

5fa30915814c48c7818bf9ecb9dc19e4c3

ad71a67b9083fb1861123061b04cbf

INE
fastexlabs/fastexchain-

consensus

beacon-chain/forkchoice/interfac

es.go

85e8d2bf3dba91cc2f706fd5a6a86cfd1d5

26318bf51c7bac0917a9244cb82e4

FOR
fastexlabs/fastexchain-

consensus

beacon-chain/forkchoice/doubly-

linked-tree/forkchoice.go

ae7d1b8a492e0cb5ccbd935eb0071816a

969ec1d5769729746bdd1109349337f

UNR
fastexlabs/fastexchain-

consensus

beacon-chain/forkchoice/doubly-

linked-tree/unrealized_justificati

on.go

51bd1f1fe4c7987ff6b0bbbe666ee181539

08aabba77171452591bdffecdf33b

STO
fastexlabs/fastexchain-

consensus

beacon-chain/forkchoice/doubly-

linked-tree/store.go

74e21fc79e5783c167dc13669f08d98978

db162caf67120cbf82a469adb779b4

TYD
fastexlabs/fastexchain-

consensus

beacon-chain/forkchoice/doubly-

linked-tree/types.go

5e0cc597e22cae48399850b095eab1790

1e82b099742be3a031462d0b0b159f5

ONT
fastexlabs/fastexchain-

consensus

beacon-chain/forkchoice/doubly-

linked-tree/on_tick.go

cd8829feaa28a423ba852aa017ddc54f7b

bdf59c30ef24cc9a60cf145003d27a

AUDIT SCOPE BAHAMUT EXECUTION AND CONSENSUS

ID Repo File SHA256 Checksum

NOE
fastexlabs/fastexchain-

consensus

beacon-chain/forkchoice/doubly-

linked-tree/node.go

c2389bc5d5b247494d16d84607160583d

a4d6d4b4c7cde184e7ed7f4e8e8d2ce

EXC
fastexlabs/fastexchain-

consensus

beacon-chain/blockchain/executi

on_engine.go

015ee81b4a394bbdd5b8d218631e79d00

cd266a4f20ef2e42edd92a8ffe9f303

LOB
fastexlabs/fastexchain-

consensus
beacon-chain/blockchain/log.go

590da905bcbd1efb2d708e2e8010235d5c

95c26cfc7733efb7b5edacfda2efc3

SEL
fastexlabs/fastexchain-

consensus

beacon-chain/blockchain/servic

e.go

eacb2e82aa4449e1b32a5d83b819915cc

0944e279e78ba46d70d7f6b96184015

MER
fastexlabs/fastexchain-

consensus

beacon-chain/blockchain/metric

s.go

9edff79cf0c9cb1d2db9853ce028906ce9c

62f511f155b5042e5f9e1d8946bd6

PRB
fastexlabs/fastexchain-

consensus

beacon-chain/blockchain/proces

s_block_helpers.go

aee0bf8107153331c8c752254da90da49b

31ef44054277f944b08c4eb5885c2a

MEG
fastexlabs/fastexchain-

consensus

beacon-chain/blockchain/merge

_ascii_art.go

b1452cc13dbc1147574bd723c5cef1b163

f5bef60ce887f16e3f7e4e9a588a5d

HED
fastexlabs/fastexchain-

consensus

beacon-chain/blockchain/head.g

o

befd15f3fadd342d9c9fface4b3a06a0150b

fac0479d5792579784015739d8d9

PRK
fastexlabs/fastexchain-

consensus

beacon-chain/blockchain/proces

s_block.go

e7572d161ba5e77bf85f1c293dd3ae3e9e

af6354d603bb9cc627da12417add56

DES
fastexlabs/fastexchain-

consensus

beacon-chain/core/blocks/depos

it.go

cb3898c966885a2e0f155cd5f57b3a9ffb6

834713c91116c4151bf2784ce4d95

HEE
fastexlabs/fastexchain-

consensus

beacon-chain/core/blocks/heade

r.go

26d2c8c83b8598be7008eb4ff9c471842d

88803155780758941c47a315ec2717

RAN
fastexlabs/fastexchain-

consensus

beacon-chain/core/blocks/randa

o.go

1ebf807cf39450d5e19746650ffc406fb48d

d354dad3248130b31ec4e140959f

SIG
fastexlabs/fastexchain-

consensus

beacon-chain/core/blocks/signat

ure.go

15476420e7ef52a4a2f71591f7e9d0e3de

6540238800925bc9334b260dd1696a

TRA
fastexlabs/fastexchain-

consensus

beacon-chain/core/transition/tra

nsition.go

e4fd4d1f29c462ab6a49dd3648e85ae17a

aa1f8cfb3b7d9883da1b9eca1c9bec

TRN
fastexlabs/fastexchain-

consensus

beacon-chain/core/transition/tra

nsition_no_verify_sig.go

fb317dc085f87e7bb0cf222ba3c5749034b

837eb2d05a47892c2370de8f4a575

AUDIT SCOPE BAHAMUT EXECUTION AND CONSENSUS

ID Repo File SHA256 Checksum

STN
fastexlabs/fastexchain-

consensus

beacon-chain/core/transition/stat

e.go

bcf3ae2fed383d4164039d2b4637cce161

c52fcb6f10ac1cea12ee258cdad833

COC
fastexlabs/fastexchain-

consensus

beacon-chain/core/transition/stat

eutils/contracts_index_map.go

80b4968d40c17b6007ae9ba064c3c9fe7c

8ea522f1c8435463d3990cc6de9f60

EPO
fastexlabs/fastexchain-

consensus

beacon-chain/core/epoch/epoch

_processing.go

9604a514eab8ef470f9a1fc5e8a99f68bb4

4db68073f56ed0f586f548b1fd313

JUS
fastexlabs/fastexchain-

consensus

beacon-chain/core/epoch/preco

mpute/justification_finalization.g

o

c7b7f09e3a69c379170cf40b1d4229e1a3

74caab944592398f07cfa2b4598355

UPG
fastexlabs/fastexchain-

consensus

beacon-chain/core/altair/upgrad

e.go

192a38e8dbc770a9bd3ef5a0a9c73a296c

e95fb13cec223fff7dd4f959b44e77

TRS
fastexlabs/fastexchain-

consensus

beacon-chain/core/altair/transitio

n.go

4f31a8bde8643457abc242d7967d69fbb9

4e13523af7b58cefc0880cb7b94c38

UPR
fastexlabs/fastexchain-

consensus

beacon-chain/core/execution/up

grade.go

ab9e7d17c0d912fe6173efc5fbddf620afe0

6aaf49bfeb7c7ba9ccd5e326feb5

COS
fastexlabs/fastexchain-

consensus

beacon-chain/core/helpers/contr

acts.go

f15254d6d4d400aac8471420284b426a12

848b799c0182c12e2398288320a727

BLF
fastexlabs/fastexchain-

consensus

beacon-chain/core/fastex-phase

1/block.go

407830caab3eda3a516e4ceab7d12c5f62

66ff1c248c8a3b551970ff43086d73

EPC
fastexlabs/fastexchain-

consensus

beacon-chain/core/fastex-phase

1/epoch_precompute.go

a99ff8c140af6c1ebfff832eeaba3dc6f3c8a

57951f81673f6ec06941933a798

TRI
fastexlabs/fastexchain-

consensus

beacon-chain/core/fastex-phase

1/transition.go

78faab36e474697a24ea56b066ea81df8f

e506a439caaf60e4213da95e5aae06

UPA
fastexlabs/fastexchain-

consensus

beacon-chain/core/fastex-phase

1/upgrade.go

e7071a1819233f57aeeb18fb48bb1dcc58

345ec38f69f589a895da2aa93b8916

TYP
fastexlabs/fastexchain-

consensus
api/client/builder/types.go

1c80a475b41992d46f6a018cec56fd101a

47f9c4d5193bc8c464612ee4f4342c

CLI
fastexlabs/fastexchain-

consensus
api/client/builder/client.go

90b9471d41d11626c01abf6b11fa48d7e8

91e20c1033b354a5f236ea052b0365

CHC
fastexlabs/fastexchain-

consensus
api/client/beacon/checkpoint.go

bdcbce655bedb3077d4e552c382e06f714

d2b932d3dd7b6e3295749910955154

AUDIT SCOPE BAHAMUT EXECUTION AND CONSENSUS

ID Repo File SHA256 Checksum

ACC
fastexlabs/fastexchain-

consensus

cmd/validator/accounts/account

s.go

cd62100204786696a4a4e500c017abb28

88c8291fa6f17b401012405140a9317

IMP
fastexlabs/fastexchain-

consensus

cmd/validator/accounts/import.g

o

b47b1ce285e36920e5d17f2204ac271624

c3f24aceb094c2c34d1264aae82810

CRE
fastexlabs/fastexchain-

consensus
cmd/validator/wallet/create.go

52be5f292590c3f2b5fdb7d8eef2e6ecfb7b

f20cea249a81563779a7312b548e

WAL
fastexlabs/fastexchain-

consensus
cmd/validator/wallet/wallet.go

dd053f67520c5a2e38520a98d03ebc64c9

8d4061cfef91ac73b2ea65e8719948

SLA
fastexlabs/fastexchain-

consensus

cmd/validator/slashing-protectio

n/slashing-protection.go

8883abade7034150f3d430ef729bcc06c9

a16234963aef72fbbfe5636fcd51e2

DEP
fastexlabs/fastexchain-

consensus

config/features/deprecated_flag

s.go

703851df0a821069fe32fb43699ca7e8e70

71ad0632c5cb0da852178cedb0909

VAU
fastexlabs/fastexchain-

consensus
config/params/values.go

f8853cbf45b3c0f5b3c65bfb4233d45fcdb9

7829d6cba762d5fd1f5af9817b89

TES
fastexlabs/fastexchain-

consensus

config/params/testnet_fastex_ch

ain_config.go

9a0634ded0fc6fefe33cf1c0bde1bb5a91ef

a11977d76bbcc619839f1cef3b74

MIN
fastexlabs/fastexchain-

consensus
config/fieldparams/minimal.go

c9cf2513bea3004a9ed335590e22e713f5

6f1ad27f6b3d1fe7c5b2227a60ab56

MAN
fastexlabs/fastexchain-

consensus
config/fieldparams/mainnet.go

5ffb1b9991670d7e74a7781c1f5a3af77c4

30d70f42417e237434bbdf0ff828c

FAC
fastexlabs/fastexchain-

consensus

consensus-types/blocks/factory.

go

54ad9d69160f092f8a57171ab5c4ce1d41

0e408e596de8c1defcfdb9ae3cbf8c

TYE
fastexlabs/fastexchain-

consensus

consensus-types/blocks/types.g

o

09bb36166be78a860087020af15a59536f

96cf11c13432dc586590551d16db82

PRT
fastexlabs/fastexchain-

consensus

consensus-types/blocks/proto.g

o

69e173678993020c4ea5b6883bfc21b7a2

01e9482172f1a2970f9508b9752cc4

UTL
fastexlabs/fastexchain-

consensus

consensus-types/interfaces/utils.

go

be1e99bef31a39519841b7d56bd04e142

74c2ee07e6855f1eba3bc71e7bef571

BEA
fastexlabs/fastexchain-

consensus

consensus-types/interfaces/bea

con_block.go

086e162bbdc35db34668e8af2301121b56

e0e88182c7070e60cf1c5017f843b4

AUDIT SCOPE BAHAMUT EXECUTION AND CONSENSUS

ID Repo File SHA256 Checksum

DEO
fastexlabs/fastexchain-

consensus
contracts/deposit/deposit.go

908b4c6c5bac2e7107d0a45b2f3c8e5c65

81a37488c00e2c6452a0598c519239

COT
fastexlabs/fastexchain-

consensus
contracts/deposit/contract.go

b1b2614a5ceeca140afbc1fd04d37e3a7b

c552730baea071818cc91c1dbed027

LOS
fastexlabs/fastexchain-

consensus
contracts/deposit/logs.go

b83ec024044c9518235c8021b1ebee3bd

aac95755c850f3c0a1afc767cda7d1e

COI
fastexlabs/fastexchain-

consensus

encoding/ssz/detect/configfork.g

o

ecec1ca5ebf3938a59a63bfa9b49d280da

7bd4e6818d3fe0723660eb7d958ec9

BYT
fastexlabs/fastexchain-

consensus
encoding/bytesutil/bytes.go

f3ae8c06186abc117c6877fc6e6f7830124

3b9bc8b5ba96f17785747d5bc40f1

JSO
fastexlabs/fastexchain-

consensus

proto/engine/v1/json_marshal_u

nmarshal.go

bcce452afd619e48da828e3cd556f7c456

3878a722493366df4cde7243e63697

V1A
fastexlabs/fastexchain-

consensus

proto/migration/v1alpha1_to_v1.

go

02ca2a4d224027157102458e82c614964

cbcabff680f6c2eccf35c941775f0cd

V1L
fastexlabs/fastexchain-

consensus

proto/migration/v1alpha1_to_v2.

go

9615bc74bf42c8459d19b6c8b304634d17

e60dd2df32aa55c44a52691b4f9a66

CLO
fastexlabs/fastexchain-

consensus

proto/prysm/v1alpha1/cloners.g

o

8961903c9d40039f27578c506ee32cf1f73

2b22e45304d39c3224ac0ef84a0e7

JSN
fastexlabs/fastexchain-

consensus

proto/prysm/v1alpha1/json_mar

shal_unmarshal.go

049a58137e6db84ace1c5e516e7a3bf77b

fb4543301f96462544005018142924

MAB
fastexlabs/fastexchain-

consensus

tools/benchmark-files-gen/main.

go

b09a5ca024e8b3bf4b0f99ecb76ad2f582f

74c8f5983613e06c78ed6280abc10

MAL
fastexlabs/fastexchain-

consensus
tools/blocktree/main.go

f34eea3513297a61c741ddb30551e0d8fe

0d5137be30ded1da6bcf49ab82f0d6

MAP
fastexlabs/fastexchain-

consensus
tools/pcli/main.go

5e629096c103f0e5c833a466d21f1df0e23

f97dec53ad94f8c6b57665f51e8f6

WAE
fastexlabs/fastexchain-

consensus

validator/accounts/wallet_creat

e.go

7cc2f081f5be950480590bb3bb113f6af6f0

1164e36d6c9bbaeca351ab886311

CLM
fastexlabs/fastexchain-

consensus

validator/accounts/cli_manager.

go

fdb766c7a35603fd27d521f8557569303e2

73e1211ada42285f152d160042dd5

AUDIT SCOPE BAHAMUT EXECUTION AND CONSENSUS

ID Repo File SHA256 Checksum

CLP
fastexlabs/fastexchain-

consensus
validator/accounts/cli_options.go

b14d53a0a587e3ff517f152996091d12b9

8f20c9cdcadebae1e4f23a79d3ef27

HEA
fastexlabs/fastexchain-

consensus
validator/rpc/health.go

33d4e4f549ac97de017be37865e1dae3ac

e4f51a41d9fb9d4cf4263435e4446f

WAT
fastexlabs/fastexchain-

consensus
validator/rpc/wallet.go

a3a48113d95c57993a0e489e11d156f156

e7018b601452ede2ac2025b2a77c50

RUN
fastexlabs/fastexchain-

consensus
validator/client/runner.go

760fa70fd6d30377751151ae7debc575aa

151d227ac7e9639ab426b05b1c86a5

PRL
fastexlabs/fastexchain-

consensus
validator/client/propose.go

e1fb8f4f33f2ea7618a3e0456f4d96e2f192

07659792769d061996fa4ab6f8a6

INR
fastexlabs/fastexchain-

execution
core/vm/interface.go

49b16b5e29f18bf541b10874071db7ed76

6939ffdde31cce80dcae72a32fbfb5

OPE
fastexlabs/fastexchain-

execution
core/vm/operations_acl.go

2fcab564fa29f2ac2deb3acb7a3dd4d255d

8bb85017a93ecf10984bcbd67b25f

COM
fastexlabs/fastexchain-

execution
core/vm/contract.go

4ef30570f4452486f1052a64467492311e

afa1fcb537be4360a9df0bb7c8addc

STD
fastexlabs/fastexchain-

execution
core/state/statedb.go

bd5de7c80e7d9d883ed971f6ef30b6f1806

5aa7f06b1a6968ecd61dc1f52e9e0

JOU
fastexlabs/fastexchain-

execution
core/state/journal.go

a4a8e619777396f51aba6dfdf033a910c3e

09da8652e2919dab787f60ad980b1

DUM
fastexlabs/fastexchain-

execution
core/state/dump.go

51165d1cba913f26ce17cffec8cd087caf9a

c5c02a63aa6c462c8e05c859e8c2

MKA
fastexlabs/fastexchain-

execution
core/mkalloc.go

0e9cc0f8ae964c896f27a8e350910b322e

cf87a9a054e538d493c8cce7e0bde4

GEL
fastexlabs/fastexchain-

execution
core/genesis_alloc.go

f0e28cda91b9a4dc30f796ded46914a46a

b90a078d352179b447f162b7b0a232

MAG
fastexlabs/fastexchain-

execution
cmd/geth/main.go

a2b4a18385093241a877c9afae0444b376

84138f255ebe352889d199284c0e9e

BAC
fastexlabs/fastexchain-

execution
eth/backend.go

a07af78235e901f86d0cb5a7777083e791

ab841e0e4dc28510ce6e2fb584ae3b

AUDIT SCOPE BAHAMUT EXECUTION AND CONSENSUS

ID Repo File SHA256 Checksum

SYC
fastexlabs/fastexchain-

execution
eth/protocols/snap/sync.go

4b5c0f669b3b33c527b756281322f10aec

c7a97184fab1a183a8d37896210d82

VER
fastexlabs/fastexchain-

execution
params/version.go

76fd56ad95194b7fe575bdba89796891bb

c0b4c48740acdaa198405137be4f54

TRE
fastexlabs/fastexchain-

execution
trie/trie.go

64c00a91509bf329c0c9b778687814daf8

443abf66746ba3fd7b77906af74202

COG
fastexlabs/fastexchain-

execution
params/config.go

c2f201bb6944de0cc6240f5bf5a551f9db4

2776bea95959f4167dfb33997711e

BOO
fastexlabs/fastexchain-

execution
params/bootnodes.go

859b6398c5476d1f072bdf959126fcfadf5b

1219ae95d73c31be750bb0ef6058

EVV
fastexlabs/fastexchain-

execution
core/vm/evm.go

fafb6dfd64906e5ef14e4fd148af460a9808

d2674ff2a95cdd41b455c1f3e498

COV
fastexlabs/fastexchain-

execution
core/vm/contracts.go

68500457b11c105518225f6b8b501036ad

b835d13b8ea8dbcba6908356361562

INS
fastexlabs/fastexchain-

execution
core/vm/instructions.go

60b2b7ecf929cd77463cbeb6fa7c6b3370

71c40fde9711999d5bce13147a7ff8

ERR
fastexlabs/fastexchain-

execution
core/vm/errors.go

df6cab5ad1e465d61f4ac8b97f958aa4fe6f

d0e4d263f6102a3eba7b715ef730

GAS
fastexlabs/fastexchain-

execution
core/vm/gas_table.go

252cb027a17fcf081b5afb555e9e25272c4

83e7dff95007e6da15a641926bfbb

STB
fastexlabs/fastexchain-

execution
core/state/statedb.go

296e8da41f5c303e8e3ef71e8c9168c48a

299b328fce3b349a74979d7cab11b0

JOR
fastexlabs/fastexchain-

execution
core/state/journal.go

6b4ea79cd07ab72c23092e830213ef23d9

aa53f36c039edd1f54fe1717e55000

STJ
fastexlabs/fastexchain-

execution
core/state/state_object.go

128cc21249d2ec3628bd63f30f0e94a6bc

5e689561f5c7d8bf68c1667fe77859

GEP
fastexlabs/fastexchain-

execution
core/state/snapshot/generate.go

10ddc38fdcdd973f6ae91b93bbb4bfd7e54

0cbb0dfb71717f5140d6faab3c640

ACO
fastexlabs/fastexchain-

execution
core/state/snapshot/account.go

9edaf7779e8311ee2bda1a8623d925886c

20454d1419c26297c1f1d5b24ac3f0

AUDIT SCOPE BAHAMUT EXECUTION AND CONSENSUS

ID Repo File SHA256 Checksum

STS
fastexlabs/fastexchain-

execution
core/state_transition.go

e5786e8011c1cf42f04f5523253bad5dcab

9faa5ddfcf536e60e1ac4ea1668a6

GEC
fastexlabs/fastexchain-

execution
core/genesis.go

a04e5523dc10fbcc38dc21e7dd0f700312

8c86f6689f5f2af72f5558da768c4e

SNA
fastexlabs/fastexchain-

execution
cmd/geth/snapshot.go

8c2e6fbd530536c7018dd9f3f653a3959a2

dd3a18f142eefbe9515bed47861a1

FLG
fastexlabs/fastexchain-

execution
cmd/utils/flags.go

31760bb526cbc5c887dd837836d01fcb6b

6418c51cf162a37e06ae2ec4f5d71a

API
fastexlabs/fastexchain-

execution
internal/ethapi/api.go

37d4e2c77c6f2d1f509e044f60a52a44f39

59032312399f559d786f186bcb101

AUDIT SCOPE BAHAMUT EXECUTION AND CONSENSUS

APPROACH &
METHODS

BAHAMUT EXECUTION AND
CONSENSUS

This report has been prepared for Fasttoken to discover issues and vulnerabilities in the source code of the Bahamut

Execution and Consensus project as well as any contract dependencies that were not part of an officially recognized library.

A comprehensive examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS BAHAMUT EXECUTION AND CONSENSUS

REVIEW NOTES BAHAMUT EXECUTION AND CONSENSUS

Overview

The Bahamut is built on the Ethereum Proof of Stake, which allows the validators to explicitly stake assets (8192 FTN

tokens) in a smart contract as a collateral that will be slashed in the case that the validator behaves dishonestly or does not

perform the duty for the consensus.

The validator needs to run three clients: an execution client (Geth), a consensus client (beacon chain), and a validator client.

Once the validator is activated after depositing the FTN tokens, the validator will receive new blocks from the peers in the

network. The transactions in the block will be re-executed in the execution layer and the signature will be validated to prove

the validity of the block. The validator will sign an attestation to vote for the block and gain rewards for successfully

participating in the consensus.

The lifecycle of a transaction is illustrated in the following steps:

1. A user submits a transaction to the execution layer via JSON-RPC and will be verified for its validity;

2. If the transaction is valid, then it will be added to the execution layer’s mempool and broadcasted to other nodes over

the gossip network;

3. Once a node is the block proposer of the current slot which is pre-assigned in a pseudo-random manner with the

RANDAO algorithm. The execution layer of the node bundles a batch of transactions from the mempool to create an

execution payload, which is passed to the consensus layer to build the beacon block.

4. Other nodes receive the beacon block via the consensus gossip network. The beacon block will be re-executed

through the execution layer to ensure the state change is correct.

5. Once the beacon block is validated, the validator client will sign the attestation for the block.

6. A transaction is finalized once it lies in between two checkpoints with a supermajority, that is, two-thirds that the

validators can be associated with the contracts that record the total balance of all active validators.

The novelty in the Bahamut protocol is that the validators are associated with the contracts that record the gas consumed in

the contracts. The gas consumption of the contract owned by the validator is used to define an activity score that belongs to

the validator, which in turn affects the chance for a validator to be a block proposer as well as the base proposer reward.

The protocols Bahamut-consensus and Bahamut-execution are forked from Prysm 3.2.2 & 4.0.3 and Geth 1.10.26

respectively, in which only the differences between the listed commits are in the audit scope.

Bahamut-consensus:

https://github.com/fastexlabs/bahamut-consensus/commit/cffbd04e743737989e44cf0ebae70fd353c5a539

Prysm:

https://github.com/prysmaticlabs/prysm/tree/e2fa7d40e3f496416283cc1d329a8ff6c048cb8a

Bahamut-execution:

REVIEW NOTES BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/bahamut-consensus/commit/cffbd04e743737989e44cf0ebae70fd353c5a539
https://github.com/prysmaticlabs/prysm/tree/e2fa7d40e3f496416283cc1d329a8ff6c048cb8a

https://github.com/fastexlabs/bahamut-execution/commit/716ea69939139eab9f45b4c68347eb67de492bea

Geth:

https://github.com/ethereum/go-ethereum/tree/e5eb32acee19cc9fca6a03b10283b7484246b15a

REVIEW NOTES BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/bahamut-execution/commit/716ea69939139eab9f45b4c68347eb67de492bea
https://github.com/ethereum/go-ethereum/tree/e5eb32acee19cc9fca6a03b10283b7484246b15a

FINDINGS BAHAMUT EXECUTION AND CONSENSUS

This report has been prepared to discover issues and vulnerabilities for Bahamut Execution and Consensus. Through this

audit, we have uncovered 30 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static

Analysis to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

FTN-04
Initial Distribution Centralization Risk

In Contract FTNVault
Centralization Major Acknowledged

322-01
Missing Contract When Processing

Deposit Log
Logical Issue Medium Resolved

DEP-02
Potentially Override The Current Owner

Of Contract
Logical Issue Medium Resolved

EVM-01

Missing Memory Gas Usage In Activity

When Adding It To StateDB In Function

CallCode()

Logical Issue Medium Resolved

PRO-01

Logical Flaw In Function filter()

Could Invoke Function From A Different

Version

Logical Issue Medium Resolved

SYN-01

Incorrect Generation Of randomByte

In Function

NextSyncCommitteeIndicesFastexPha

se1()

Logical Issue,

Inconsistency
Medium Resolved

ACT-01
Missing Nil Check Of Variable

Activity
Volatile Code Minor Resolved

ATT-01

Missing Check Of

proposerRewardDenominator Could

Possibly Lead To Division By Zero

Volatile Code Minor Resolved

COR-02 Potential Overflow And Underflow
Incorrect

Calculation
Minor Resolved

FINDINGS BAHAMUT EXECUTION AND CONSENSUS

30
Total Findings

0
Critical

1
Major

5
Medium

9
Minor

15
Informational

ID Title Category Severity Status

FTN-01 Potential Initialization By Frontrunner Logical Issue Minor Acknowledged

FTN-02 Missing Receive Function Logical Issue Minor Acknowledged

FTN-03
Discussion On The Mint Workflow With

Function processBurnTransaction()
Logical Issue Minor Acknowledged

MAI-01
Mainnet Could Possibly Be

Misconfigured
Logical Issue Minor Resolved

PRP-01

The Output Block Does Not Contain

ActivityChanges ,

TransactionsCount , BaseFee , And

ExecutionHeight

Logical Issue Minor Resolved

REW-02
Possibly Incorrect Calculation Of Base

Proposer Reward

Logical Issue,

Inconsistency
Minor Resolved

33B-01
Typo In Variable Names And Function

Names
Coding Style Informational Resolved

3B8-01
Discussion On Value Of

SigmoidLimit
Logical Issue Informational Resolved

BEA-01 Typo In Error Messages Coding Style Informational Resolved

COB-02

Discussion On The Use Of The Sigmoid

Function In Block Proposer And Sync

Committee Members Selection

Logical Issue Informational Resolved

COB-03

Discussion On Two Implementations Of

Block Proposer And Sync Committee

Selection In Different Versions

Logical Issue Informational Resolved

COE-03
Inconsistency Between Implementation

And Whitepaper
Logical Issue Informational Resolved

DEO-02
Discussion On Contract Registration

With Validators
Logical Issue Informational Resolved

FINDINGS BAHAMUT EXECUTION AND CONSENSUS

ID Title Category Severity Status

DES-02
Discussion On Inconsistency Between

Deposit Contract And Its Binding
Logical Issue Informational Resolved

GLOBAL-01
Current Version Does Not Contain

Patch For MEV-Boost Attack
Inconsistency Informational Resolved

REW-01
Discussion On The Calculation Of

BaseProposerReward
Logical Issue Informational Resolved

STF-01
Typo In The Codebase Of Execution

Layer
Coding Style Informational Resolved

STT-02
Typo In The Codebase Of Consensus

Layer
Coding Style Informational Resolved

VAL-02
Typo In Function Name

isEligibileForActivationQueue()
Coding Style Informational Resolved

VAL-03
Code Simplification In Function

RandomBytes()
Coding Style Informational Resolved

VAL-04

Inconsistency Between Implementation

And Whitepaper On The Calculation Of

Validator's Power

Inconsistency Informational Acknowledged

FINDINGS BAHAMUT EXECUTION AND CONSENSUS

FTN-04 INITIAL DISTRIBUTION CENTRALIZATION RISK IN
CONTRACT FTNVault

Category Severity Location Status

Centralization Major bahamut/FTNVault.sol (bahamut): 56 Acknowledged

Description

In the contract FTNVault, the role owner has authority over the functions shown in the diagram below.

Authenticated Role Function

_owner updateLimit

updateLimit(address minterAddress_, uint256 limit_) to update the maximum amount of the native FTN token

that an minterAddress_ is able to withdraw.

According to the project design, the native FTN tokens will be initialized to the FTNVault contact in the genesis. In this case,

any compromise to the owner account may allow a hacker to take advantage of this authority and drain the FTN tokens from

the contract FTNVault. If the hacker controls the owner role, the hacker is able to call the function updateLimit() to set

the maximum amount of the native FTN token to the hacker's account, then invokes processBurnTransaction() to

withdraw the native FTN tokens, resulting in severe damage to the project.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

FTN-04 BAHAMUT EXECUTION AND CONSENSUS

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Alleviation

[Fasttoken - 07/07/2023] :

The team is planning to use timelock and multisig in the future, once we have a multisig DAPP deployed on Fastex Chain,

and we will share the address with you so you can verify it.

[CertiK - 07/07/2023] :

Once the timelock and multisig are applied, CertiK strongly encourages the project team to periodically revisit the private key

security management.

FTN-04 BAHAMUT EXECUTION AND CONSENSUS

322-01 MISSING Contract WHEN PROCESSING DEPOSIT LOG

Category Severity Location Status

Logical

Issue
Medium

beacon-chain/execution/log_processing.go (3226f83): 112; contracts/d

eposit/logs.go (3226f83): 11
Resolved

Description

Files:

beacon-chain/execution/log_processing.go

contracts/deposit/logs.go

Commit:

3226f8330911cb8df77e775f0155b335ba771bd8

The ProcessDepositLog() function in is responsible for handling the received log from the eth1 chain and generating the

deposit data object. However, there is currently no logic implemented to handle the Contract attribute or include it in the

deposit data object.

beacon-chain/execution/log_processing.go

133 depositData := ðpb.Deposit_Data{

134 Amount: bytesutil.FromBytes8(amount),

135 PublicKey: pubkey,

136 Signature: signature,

137 WithdrawalCredentials: withdrawalCredentials,

138 }

contracts/deposit/logs.go

322-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8

11 func UnpackDepositLogData(data []byte) (pubkey, withdrawalCredentials, amount,

 signature, index []byte, err error) {

12 reader := bytes.NewReader([]byte(DepositContractABI))

13 contractAbi, err := abi.JSON(reader)

14 if err != nil {

15 return nil, nil, nil, nil, nil, errors.Wrap(err,

"unable to generate contract abi")

16 }

17

18 unpackedLogs, err := contractAbi.Unpack("DepositEvent", data)

19 if err != nil {

20 return nil, nil, nil, nil, nil, errors.Wrap(err,

"unable to unpack logs")

21 }

22

23 return unpackedLogs[0].([]byte), unpackedLogs[1].([]byte), unpackedLogs[2].

([]byte), unpackedLogs[3].([]byte), unpackedLogs[4].([]byte), nil

24 }

Recommendation

Recommend implementing the necessary logic for handling the contract attribute and ensuring the data integrity of the

deposit data.

Alleviation

[Fasttoken - 06/06/2023] :

The team resolved the finding by adding the field Contract in the commit cffbd04e743737989e44cf0ebae70fd353c5a539 .

322-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/commit/cffbd04e743737989e44cf0ebae70fd353c5a539

DEP-02 POTENTIALLY OVERRIDE THE CURRENT OWNER OF
CONTRACT

Category Severity Location Status

Logical Issue Medium beacon-chain/core/blocks/deposit.go (3226f83): 192~204 Resolved

Description

Files:

beacon-chain/core/block/deposit.go

Commit:

3226f8330911cb8df77e775f0155b335ba771bd8

If a contract is associated with a previous validator, and a new validator registers the same contract, then the previous

owner's contract will be set to a zero address. This creates an issue that any validator can occupy the contract with high

activities, thereby gaining more power and increasing their chances of being selected as the block proposer.

192 if contractExist {

193 // Set zero-contract to the old owner of the contract

194 // if the contract is already presented in beacon state.

195 owner, err := beaconState.ValidatorAtIndex(contractOwner)

196 if err != nil {

197 return nil, newValidator, err

198 }

199 newVal := ethpb.CopyValidator(owner)

200 newVal.Contract = params.BeaconConfig().ZeroContract[:]

201 if err := beaconState.UpdateValidatorAtIndex(contractOwner, newVal);

 err != nil {

202 return nil, newValidator, err

203 }

204 }

Moreover, in the new design, a validator owns at most one contract, and the current owner of a contract cannot update the

contract because once the validator has been set, then it will not be able to enter the branch to update the contract.

173 contractOwner, contractExist := beaconState.ValidatorIndexByContract(

bytesutil.ToBytes20(contract))

174 index, ok := beaconState.ValidatorIndexByPubkey(bytesutil.ToBytes48(pubKey)

)

175 if !ok {

176 ...

DEP-02 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8

The auditing team would like to confirm with the Fasttoken team if the existing logic is in accordance with the design.

Recommendation

We recommend reviewing the logic again and ensuring it is as intended.

Alleviation

[Fasttoken - 06/08/2023] :

The team resolved the finding by utilizing the following logic:

if the validator is not new, then its contract will be updated with the passed contract;

if the validator is new and if the passed contract has been owned by a validator that has not exited, a zero contract is

set to the new validator.

if the validator is new, then if the passed contract has not been owned or the passed contract has been owned by a

validator that has exited, the contract is set to the new validator.

196 if contractExist {

197 owner, err := beaconState.ValidatorAtIndexReadOnly(contractOwner)

198 if err != nil {

199 return nil, newValidator, err

200 }

201 if owner.ExitEpoch() >= epoch {

202 contract = params.BeaconConfig().ZeroContract[:]

203 }

204 }

205 if err := beaconState.AppendValidator(ðpb.Validator{

206 PublicKey: pubKey,

207 WithdrawalCredentials: deposit.Data.WithdrawalCredentials,

208 Contract: contract,

209 ActivationEligibilityEpoch: params.BeaconConfig().FarFutureEpoch,

210 ActivationEpoch: params.BeaconConfig().FarFutureEpoch,

211 ExitEpoch: params.BeaconConfig().FarFutureEpoch,

212 WithdrawableEpoch: params.BeaconConfig().FarFutureEpoch,

213 EffectiveBalance: effectiveBalance,

214 }); err != nil {

215 return nil, newValidator, err

216 }

The change is reflected in the commit cffbd04e743737989e44cf0ebae70fd353c5a539 .

DEP-02 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/commit/cffbd04e743737989e44cf0ebae70fd353c5a539

EVM-01 MISSING MEMORY GAS USAGE IN ACTIVITY WHEN
ADDING IT TO STATEDB IN FUNCTION CallCode()

Category Severity Location Status

Logical Issue Medium core/vm/evm.go (execution): 353 Resolved

Description

Files:

core/vm/evm.go

Commit:

af75d5f6c6ab5a33f6a1ac86c5c443e7be943cf1

In the execution layer, the invocation of the function CallCode() changes the address's activity based on gas usage, one of

which is the memory gas usage:

CallCode()

341 memGas, err := evm.memoryGas(input)

342 if err != nil {

343 return nil, gas, err

344 }

345 if caller.Address() != evm.Origin {

346 memGas = 0

347 }

348

349 evm.StateDB.AddActivity(addrCopy, initialGas-contract.Gas-contract.

OthersGas+memGas)

350 evm.StateDB.AddActivities(&types.Activity{

351 Address: addrCopy,

352 Activity: evm.StateDB.GetActivity(addrCopy),

353 DeltaActivity: initialGas - contract.Gas - contract.OthersGas,

354 })

However, an inconsistency occurs when adding the activity to the evm.StateDB . In line 349, the added activity is calculated

as initialGas-contract.Gas-contract.OthersGas+memGas , while the memGas is missing in line 353 in the call of

evm.StateDB.AddActivities() , which only accepts initialGas - contract.Gas - contract.OthersGas as an input.

Recommendation

EVM-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-execution/tree/af75d5f6c6ab5a33f6a1ac86c5c443e7be943cf1

We recommend adding the MemGas to the DeltaActivity of a new activity.

Alleviation

[Fasttoken - 05/11/2023] :

The team resolved the finding by removing the calculation of memGas and evm.StateDB.AddActivity() from the function

CallCode() . The change is reflected in the commit 1b44e499f1275b821dff5f14169f4cfcd2225d22 .

EVM-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-execution/commit/1b44e499f1275b821dff5f14169f4cfcd2225d22

PRO-01 LOGICAL FLAW IN FUNCTION filter() COULD INVOKE

FUNCTION FROM A DIFFERENT VERSION

Category Severity Location Status

Logical

Issue
Medium

beacon-chain/rpc/prysm/v1alpha1/validator/proposer_attestations.go

(33b75d4): 91~108
Resolved

Description

Files:

beacon-chain/rpc/prysm/v1alpha1/validator/proposer_attestations.go

Commit:

33b75d4e162179d360e60ac88bb4289293b530a6

The function filter() is intended to filter the attestation list into valid and invalid attestations separately, which has

different implementations according to different versions.

However, there is a logical flaw introduced in lines 91-108 due to the fact that version.Altair < version.FastexPhase1

(i.e., 1 < 3):

PRO-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/33b75d4e162179d360e60ac88bb4289293b530a6

91 } else if st.Version() >= version.Altair {

92

// Use a wrapper here, as go needs strong typing for the function signature.

93 attestationProcessor = func(ctx context.Context, st state.BeaconState,

 attestation *ethpb.Attestation) (state.BeaconState, error) {

94 totalBalance, err := helpers.TotalActiveBalance(st)

95 if err != nil {

96 return nil, err

97 }

98 return altair.ProcessAttestationNoVerifySignature(ctx, st,

 attestation, totalBalance)

99 }

100 } else if st.Version() >= version.FastexPhase1 {

101

// Use a wrapper here, as go needs strong typing for the function signature.

102 attestationProcessor = func(ctx context.Context, st state.BeaconState,

 attestation *ethpb.Attestation) (state.BeaconState, error) {

103 totalBalance, err := helpers.TotalActiveBalance(st)

104 if err != nil {

105 return nil, err

106 }

107 return fastexphase1.ProcessAttestationNoVerifySignature(ctx, st,

 attestation, totalBalance)

108 }

The branch st.Version() >= version.FastexPhase1 is unreachable because any version not less than version.Altair

will enter the branch st.Version() >= version.Altair in line 91. In this case, if the current version is in the post-

FastexPhase1, it will use the function altair.ProcessAttestationNoVerifySignature() instead of the function

fastexphase1.ProcessAttestationNoVerifySignature() as the attestationProcessor , which could lead to an

unexpected result. For example, different implementations of the function RewardProposer() will be invoked.

Recommendation

Recommend reconstructing the logic so that the function fastexphase1.ProcessAttestationNoVerifySignature() will be

used in the post-FastexPhase1.

Alleviation

[Fasttoken - 05/25/2023] :

The team heeded the advice and resolved the finding by removing the branch st.Version() >= version.FastexPhase1

so that all the versions satisfying the condition st.Version() >= version.Altair will enter the same branch using the

same implementation. The change is reflected in the commit 3226f8330911cb8df77e775f0155b335ba771bd8 .

PRO-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8

SYN-01 INCORRECT GENERATION OF randomByte IN FUNCTION

NextSyncCommitteeIndicesFastexPhase1()

Category Severity Location Status

Logical Issue,

Inconsistency
Medium

beacon-chain/core/altair/sync_committee.go (33b75d4): 12

7~130, 200~201, 209
Resolved

Description

Files:

beacon-chain/core/altair/sync_committee.go

Commit:

33b75d4e162179d360e60ac88bb4289293b530a6

The incorrect generation of randByte allows any active validator to be selected in the sync committee regardless of their

effective balances, which does not align with the consensus algorithm.

The function NextSyncCommitte() is used to select the sync committee members from the active validators. In the current

code, Fasttoken implements two algorithms according to the version.

61 func NextSyncCommittee(ctx context.Context, s state.BeaconState) (*ethpb.

SyncCommittee, error) {

62 var indices []primitives.ValidatorIndex

63 var err error

64 if s.Version() < version.FastexPhase1 {

65 indices, err = NextSyncCommitteeIndices(ctx, s)

66 } else {

67 indices, err = NextSyncCommitteeIndicesFastexPhase1(ctx, s)

68 }

69 ...

If the version is less than the FastexPhase1 , it uses the custom algorithm that applies the validator power by invoking the

function NextSyncCommitteeIndices() . On the other hand, if the version is in post FastexPhase1 , the algorithm inherits

the original one from Ethereum Proof of Stake, which is implemented in the function

NextSyncCommitteeIndicesFastexPhase1() .

Both algorithms use the same randomness generation and the same maxRandomByte (= 65535). In the function

NextSyncCommitteeIndices() , the randomBytes is generated by two bytes, so randomBytes is in the range of 0 and

65535.

SYN-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/33b75d4e162179d360e60ac88bb4289293b530a6

NextSyncCommitteeIndices()

127 b := append(seed[:], bytesutil.Bytes8(uint64(i.Div(16)))...)

128 hash := hashFunc(b)

129 bytes2 := append([]byte{}, hash[i%16], hash[16+i%16])

130 randomBytes := new(big.Float).SetUint64(uint64(bytesutil.FromBytes2(

bytes2)))

However, the randomByte in the function NextSyncCommitteeIndicesFastexPhase1() only has one byte, which is in the

range of 0 and 255. In this case, the ratio randomByte / maxRandomByte is too small which allows almost all validators to be

selected regardless of their effective balances. In other words, the effective balance does not affect the chance of a validator

to be selected.

NextSyncCommitteeIndicesFastexPhase1()

200 b := append(seed[:], bytesutil.Bytes8(uint64(i.Div(32)))...)

201 randomByte := hashFunc(b)[i%32]

202 cIndex := indices[sIndex]

203 v, err := s.ValidatorAtIndexReadOnly(cIndex)

204 if err != nil {

205 return nil, err

206 }

207

208 effectiveBal := v.EffectiveBalance()

209 if effectiveBal*maxRandomByte >= cfg.MaxEffectiveBalance*uint64(

randomByte) {

210 cIndices = append(cIndices, cIndex)

211 }

Proof of Concept

To demonstrate the scenario, the auditing team uses the following test script:

1. Initialize 512 validators with minDepositAmount == 1e9 / 8 ;

2. Normally, a validator needs a 16e9 deposit amount to be active and the max effective balance is 32e9 in PoS.

The number 1e9 / 8 is used here to indicate the effective balance check can be bypassed with a very small

effective balance;

3. Invoke the function NextSyncCommitteeIndicesFastexPhase1() for the testing.

Test Script:

SYN-01 BAHAMUT EXECUTION AND CONSENSUS

package altair_test

import (

"context"

"fmt"

"testing"

"time"

"github.com/prysmaticlabs/prysm/v3/beacon-chain/core/altair"

"github.com/prysmaticlabs/prysm/v3/beacon-chain/core/helpers"

"github.com/prysmaticlabs/prysm/v3/beacon-chain/state"

state_native "github.com/prysmaticlabs/prysm/v3/beacon-chain/state/state-native"

"github.com/prysmaticlabs/prysm/v3/config/params"

"github.com/prysmaticlabs/prysm/v3/consensus-types/primitives"

"github.com/prysmaticlabs/prysm/v3/crypto/bls"

ethpb "github.com/prysmaticlabs/prysm/v3/proto/prysm/v1alpha1"

"github.com/prysmaticlabs/prysm/v3/testing/assert"

"github.com/prysmaticlabs/prysm/v3/testing/require"

prysmTime "github.com/prysmaticlabs/prysm/v3/time"

)

func TestNextSyncCommitteeIndicesFastexPhase1(t *testing.T) {

getState := func(t *testing.T, count uint64) state.BeaconState {

validators := make([]*ethpb.Validator, count)

for i := 0; i < len(validators); i++ {

validators[i] = ðpb.Validator{

ExitEpoch: params.BeaconConfig().FarFutureEpoch,

EffectiveBalance: params.BeaconConfig().MinDepositAmount / 8,

}

}

st, err := state_native.InitializeFromProtoAltair(ðpb.BeaconStateAltair{

Validators: validators,

RandaoMixes: make([][]byte,

params.BeaconConfig().EpochsPerHistoricalVector),

})

require.NoError(t, err)

return st

}

st := getState(t, 512)

got, err := altair.NextSyncCommitteeIndicesFastexPhase1(context.Background(),

st)

require.NoError(t, err)

fmt.Printf("Number of Sync commeetiee members is: %d out of %d members\n",

len(got), 512)

}

Result:

SYN-01 BAHAMUT EXECUTION AND CONSENSUS

=== RUN TestNextSyncCommitteeIndicesFastexPhase1

Number of Sync commeetiee members is: 512 out of 512 members

--- PASS: TestNextSyncCommitteeIndicesFastexPhase1 (0.76s)

PASS

The result shows all 512 validators have been selected even though their effective balances are very small.

Recommendation

Recommend changing the generation of randByte in the function NextSyncCommitteeIndicesFastexPhase1() to have

two bytes in order to align with the maxRandomByte .

Alleviation

[Fasttoken - 05/25/2023] :

The team heeded the advice and resolved the finding by removing the implementation when s.Version() <

version.FastexPhase1 and changing the maxRandomByte from uint64(1<<16 - 1) to uint64(1<<8 - 1) :

23 const maxRandomByte = uint64(1<<8 - 1)

The change is reflected in the commit 3226f8330911cb8df77e775f0155b335ba771bd8 .

SYN-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8

ACT-01 MISSING NIL CHECK OF VARIABLE Activity

Category Severity Location Status

Volatile Code Minor beacon-chain/core/blocks/activities.go (consensus): 42 Resolved

Description

Files:

beacon-chain/core/blocks/activities.go

Commit:

3b8da2895d7067405b54c0829eee7e044a0f978e

The function ProcessBlockActivities() is intended to process the activities in a block, which invokes the function

ProcessActivity() with each activity from the block. Since the activities are fetched from the execution layer, they

could possibly contain some nil value. If the activity is nil, then fetching ContractAddress from the activity in line 42

of the function ProcessActivity() will lead to a runtime panic.

34 func ProcessActivity(

35 ctx context.Context,

36 beaconState state.BeaconState,

37 activity *ethpb.ActivityChange,

38) (state.BeaconState, error) {

39 ctx, span := trace.StartSpan(ctx, "core.ProcessActivtiyNoVerifySignature")

40 defer span.End()

41

42 contract := bytesutil.ToBytes20(activity.ContractAddress)

43 idx, ok := beaconState.ValidatorIndexByContractAddress(contract)

44 if !ok {

45 nonStakersGas := beaconState.NonStakersGasPerEpoch()

46 if err := beaconState.SetNonStakersGasPerEpoch(nonStakersGas + activity

.DeltaActivity); err != nil {

47 return nil, err

48 }

49 return beaconState, nil

50 }

51 ...

Recommendation

Recommend adding the nil check of the activity to ensure no nil value is passed into the function ProcessActivity() .

ACT-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3b8da2895d7067405b54c0829eee7e044a0f978e

Alleviation

[Fasttoken - 05/25/2023] :

The team heeded the advice and resolved the finding by adding the nil check of the activity. Additionally the file has been

renamed from activities.go to activity_changes.go :

beacon-chain/core/blocks/activity_changes.go

19 func ProcessActivityChanges(

20 ctx context.Context,

21 beaconState state.BeaconState,

22 activityChanges []*ethpb.ActivityChange,

23) (state.BeaconState, error) {

24 var err error

25 for _, ac := range activityChanges {

26 if ac == nil || ac.ContractAddress == nil {

27 return nil, errors.New("got a nil activity change in block")

28 }

29 beaconState, err = ProcessActivityChange(ctx, beaconState, ac)

30 if err != nil {

31 return nil, errors.Wrapf(err,

"could not process activity change from 0x%x", ac.ContractAddress)

32 }

33 }

34 return beaconState, nil

35 }

The change is reflected in the commit 3226f8330911cb8df77e775f0155b335ba771bd8 .

ACT-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8

ATT-01 MISSING CHECK OF proposerRewardDenominator COULD

POSSIBLY LEAD TO DIVISION BY ZERO

Category Severity Location Status

Volatile Code Minor beacon-chain/core/fastex-phase1/attestation.go (33b75d4): 205, 213 Resolved

Description

Files:

beacon-chain/core/fastex-phase1/attestation.go

Commit:

33b75d4e162179d360e60ac88bb4289293b530a6

The function RewardProposer() is intended to calculate the reward for the block proposer, which accepts the parameters,

proposerRewardNumerator and proposerRewardDenominator from the return values of function EpochParticipation() .

If the passed indices is empty in the loop of the EpochParticipation() , both proposerRewardNumerator and

proposerRewardDenominator will be 0 and the returned error is nil.

129 func EpochParticipation(

130 beaconState state.BeaconState,

131 indices []uint64,

132 epochParticipation []byte,

133 participatedFlags map[uint8]bool,

134 totalBalance uint64,

135) (uint64, uint64, []byte, error) {

136 cfg := params.BeaconConfig()

137 sourceFlagIndex := cfg.TimelySourceFlagIndex

138 targetFlagIndex := cfg.TimelyTargetFlagIndex

139 headFlagIndex := cfg.TimelyHeadFlagIndex

140 proposerRewardNumerator := uint64(0)

141 proposerRewardDenominator := uint64(0)

142 for _, index := range indices {

143 ...

144 }

145 return proposerRewardNumerator, proposerRewardDenominator,

 epochParticipation, nil

146 }

In this case, error handling in lines 99-101 and 109-110 of the function SetParticipationAndRewardProposer() will be

bypassed.

ATT-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/33b75d4e162179d360e60ac88bb4289293b530a6

84 func SetParticipationAndRewardProposer(

85 ctx context.Context,

86 beaconState state.BeaconState,

87 targetEpoch primitives.Epoch,

88 indices []uint64,

89 participatedFlags map[uint8]bool,

90 totalBalance uint64,

91) (state.BeaconState, error) {

92 var proposerRewardNumerator uint64

93 var proposerRewardDenominator uint64

94 currentEpoch := time.CurrentEpoch(beaconState)

95 var stateErr error

96 if targetEpoch == currentEpoch {

97 stateErr = beaconState.ModifyCurrentParticipationBits(func(val []byte)

([]byte, error) {

98 propRewardNum, propRewardDenom, epochParticipation, err :=

EpochParticipation(beaconState, indices, val, participatedFlags, totalBalance)

99 if err != nil {

100 return nil, err

101 }

102 proposerRewardNumerator = propRewardNum

103 proposerRewardDenominator = propRewardDenom

104 return epochParticipation, nil

105 })

106 } else {

107 stateErr = beaconState.ModifyPreviousParticipationBits(func(val []byte)

 ([]byte, error) {

108 propRewardNum, propRewardDenom, epochParticipation, err :=

EpochParticipation(beaconState, indices, val, participatedFlags, totalBalance)

109 if err != nil {

110 return nil, err

111 }

112 proposerRewardNumerator = propRewardNum

113 proposerRewardDenominator = propRewardDenom

114 return epochParticipation, nil

115 })

116 }

117 if stateErr != nil {

118 return nil, stateErr

119 }

120

121 if err := RewardProposer(ctx, beaconState, proposerRewardNumerator,

 proposerRewardDenominator); err != nil {

122 return nil, err

123 }

124

125 return beaconState, nil

126 }

In addition, the error handling in lines 117-119 will also be bypassed, allowing the function RewardProposer() with

proposerRewardDenominator as 0 to be invoked in the function SetParticipationAndRewardProposer() . Therefore, the

ATT-01 BAHAMUT EXECUTION AND CONSENSUS

parameter proposerRewardDenominator passed in the RewardProposer() is 0.

Recommendation

To avoid the potential corner case that causes division-by-zero runtime panic, recommend adding an extra check in the

function RewardProposer() to ensure the passed proposerRewardDenominator is nonzero.

Alleviation

[Fasttoken - 05/25/2023] :

The team heeded the advice and resolved the finding by adding the check of proposerRewardDenominator in the function

RewardProposer() , which has been incorporated in the file beacon-chain/core/altair/attestation.go as the folder

beacon-chain/core/fastex-phase1 has been removed:

beacon-chain/core/altair/attestation.go

233 func RewardProposer(ctx context.Context, beaconState state.BeaconState,

 proposerRewardNumerator, proposerRewardDenominator uint64) error {

234 cfg := params.BeaconConfig()

235 totalPower, totalEffectivePower, err := helpers.Powers(ctx, beaconState)

236 if err != nil {

237 return err

238 }

239 baseProposerReward, err := BaseProposerReward(beaconState, totalPower,

 totalEffectivePower)

240 if err != nil {

241 return err

242 }

243

244 proposerReward := baseProposerReward * (cfg.WeightDenominator - cfg.

SyncRewardWeight) / cfg.WeightDenominator

245 if proposerRewardDenominator == 0 {

246 proposerReward = 0

247 } else {

248 proposerReward = proposerReward * proposerRewardNumerator /

 proposerRewardDenominator

249 }

250

251 i, err := helpers.BeaconProposerIndex(ctx, beaconState)

252 if err != nil {

253 return err

254 }

255

256 return helpers.IncreaseBalance(beaconState, i, proposerReward)

257 }

The change is reflected in the commit 3226f8330911cb8df77e775f0155b335ba771bd8 .

ATT-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8

COR-02 POTENTIAL OVERFLOW AND UNDERFLOW

Category Severity Location Status

Incorrect

Calculation
Minor

core/state/state_object.go (execution): 400, 412; core/state_transitio

n.go (execution): 406, 415~417, 423~425, 423~425, 427
Resolved

Description

Files:

core/state/state_object.go

core/state_transition.go

Commit:

af75d5f6c6ab5a33f6a1ac86c5c443e7be943cf1

There are no overflow and underflow protections in the following functions, making it possible for overflow/underflow to occur

and could possibly lead to inaccurate calculations.

core/state/state_object.go

400 func (s *stateObject) AddActivity(amount uint64) {

401 if amount == 0 {

402 if s.empty() {

403 s.touch()

404 }

405 return

406 }

407

408 s.SetActivity(s.Activity() + amount)

409 }

410

411 // SubActivity remove some amount of activity to s's activity

412 func (s *stateObject) SubActivity(amount uint64) {

413 if amount == 0 {

414 if s.empty() {

415 s.touch()

416 }

417 return

418 }

419

420 s.SetActivity(s.Activity() - amount)

421 }

COR-02 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-execution/tree/af75d5f6c6ab5a33f6a1ac86c5c443e7be943cf1

core/state_transition.go

396 func (st *StateTransition) refundActivity(refund uint64) {

397 if refund == 0 {

398 return

399 }

400

401 totalRefund := refund

402 totalActivityByContract := make(map[common.Address]uint64)

403 totalRefundsByContracts := make(map[common.Address]uint64)

404 currentActivities := st.state.GetCurrentActivities()

405 for _, act := range currentActivities {

406 totalActivityByContract[act.Address] += act.DeltaActivity

407 }

408 var proportion []float64

409 for _, act := range currentActivities {

410 proportion = append(proportion, float64(act.DeltaActivity)/float64(

totalActivityByContract[act.Address]))

411 }

412

413 for i, act := range currentActivities {

414 if i == len(currentActivities)-1 {

415 totalRefundsByContracts[act.Address] += refund

416 act.DeltaActivity -= refund

417 act.Activity -= totalRefundsByContracts[act.Address]

418 st.state.SubActivity(act.Address, refund)

419 log.Debug("Refunded contract activity", "activity", refund, "addr",

 act.Address)

420 } else {

421 totalRefundByContract := float64(totalRefund*st.state.

GetRefundsByContract(act.Address)) / float64(st.state.GetRefund())

422 refundAct := uint64(totalRefundByContract * proportion[i])

423 totalRefundsByContracts[act.Address] += refundAct

424 act.DeltaActivity -= refundAct

425 act.Activity -= totalRefundsByContracts[act.Address]

426 st.state.SubActivity(act.Address, refundAct)

427 refund -= refundAct

428 log.Debug("Refunded contract activity", "activity",

 totalRefundByContract, "addr", act.Address)

429 }

430 }

431 }

Recommendation

We recommend adding overflow and underflow protections for these functions. Additionally, we also recommend reviewing

all other functions and ensuring overflow and underflow protections are applied.

Alleviation

COR-02 BAHAMUT EXECUTION AND CONSENSUS

[Fasttoken - 05/11/2023] :

The team resolved the finding by removing the functions AddActivity() and SubActivity() from the codebase. The

change is reflected in the commit 1b44e499f1275b821dff5f14169f4cfcd2225d22 .

[CertiK - 05/11/2023] :

The function refundActivity() in the file core/state_transition.go has been modified in the commit

1b44e499f1275b821dff5f14169f4cfcd2225d22 , but the recommendation is still able to be applied.

[Fasttoken - 07/06/2023] :

The team resolved the issue at the function refundActivity() of the file core/state_transition.go. The change is

reflected in the commit 3d669ac92faa0747a2aa2e8905e46d39c563d114 .

COR-02 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-execution/commit/1b44e499f1275b821dff5f14169f4cfcd2225d22
https://github.com/fastexlabs/fastexchain-execution/commit/1b44e499f1275b821dff5f14169f4cfcd2225d22
https://github.com/fastexlabs/fastexchain-execution/commit/3d669ac92faa0747a2aa2e8905e46d39c563d114

FTN-01 POTENTIAL INITIALIZATION BY FRONTRUNNER

Category Severity Location Status

Logical Issue Minor bahamut/FTNVault.sol (bahamut): 43 Acknowledged

Description

Files:

bahamut/FTNVault.sol

Commit:

1f2392be6927c2227a0061a5c7c9f7c937545971

In the contract FTNVault , the function initialize() can be called by anyone due to no access restriction, which enables

anyone to initialize the contract, and gain ownership of the contract. Malicious users could observe the pending transaction

which will execute the initialize() function in the mempool, and launch a similar transaction to front-run the pending

transaction.

43 function initialize(bytes32 burnTxHash_) public {

44

45 require(!initialized, 'Contract has already been initialized');

46 initialized = true;

47

48 _transferOwnership(msg.sender);

49 burnTransactionHashes[burnTxHash_] = true;

50

51 uint256 amount = 1000 * 10**18;

52 emit BurnTransactionProcessed(burnTxHash_, msg.sender, amount);

53 }

In the case that the contract has some native FTN tokens after the deployment, then the malicious users that control the

contract will be able to drain the contract via the functions updateLimit() and processBurnTransaction() .

Recommendation

Consider the following modification to the function initialize() :

add access control to the function initialize() so that only the deployer is able to call it;

set a new parameter to accept the new owner and pass the new owner to the function _transferOwnership() .

FTN-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fasttoken1/fasttoken-distribution-eth-contracts/tree/1f2392be6927c2227a0061a5c7c9f7c937545971

Alleviation

[Fasttoken - 05/04/2023] :

The team acknowledged the finding. This is impossible simply due to the fact that only one account/address (which the team

has) has access to native FTNs to do the mentioned transaction. There is literally no other FTNs available to any potential

malicious users, even if they frontrun it, they cannot execute the transaction without native FTNs.

FTN-01 BAHAMUT EXECUTION AND CONSENSUS

FTN-02 MISSING RECEIVE FUNCTION

Category Severity Location Status

Logical Issue Minor bahamut/FTNVault.sol (bahamut): 19 Acknowledged

Description

Files:

bahamut/FTNVault.sol

Commit:

1f2392be6927c2227a0061a5c7c9f7c937545971

The contract FTNVault.sol serves as a vault of native FTN tokens to redeem the same amount of FTN tokens that the

user has burnt on Ethereum.

However, no receive, fallback, or any payable function is implemented in the contract to accept the native FTN tokens. In this

case, there is no FTN token in the vault except for tokens obtained from the self-destruct of other contracts or before the

deployment. Both methods do not align with the current design because the amount of native FTN tokens is determined by

the burnt amount on Ethereum.

Proof of Concept

To demonstrate the scenario, the auditing team uses the following test script with the Foundry framework:

1. Send Alice 1000 ether;

2. Initialize the contract FTNVault;

3. Alice sends 100 ether to the contract FTNVault.

Test Script

FTN-02 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fasttoken1/fasttoken-distribution-eth-contracts/tree/1f2392be6927c2227a0061a5c7c9f7c937545971

// SPDX-License-Identifier: UNLICENSED

pragma solidity 0.8.15;

//import "forge-std/Script.sol";

import "forge-std/Test.sol";

import "src/FTNVault.sol";

contract PoC is Test {

 address Alice = address(1);

 function setUp() public {

 vm.deal(Alice, 1000 ether);

 }

function testSendFTN() public {

 FTNVault vault = new FTNVault();

emit log_string("-------------- Before Ether Sent --------------");

emit log_named_uint("Balance of Alice ", address(Alice).balance / 1 ether);

emit log_named_uint("Balance of FTNVault ", address(vault).balance / 1

ether);

 emit log_named_address("The vault address ", address(vault));

 // sent 100 ether from Alice to the vault

 vm.startPrank(Alice);

 payable(address(vault)).transfer(100 ether);

 vm.stopPrank();

 emit log_string("-------------- After Ether Sent --------------");

emit log_named_uint("Balance of Alice ", address(Alice).balance / 1 ether);

emit log_named_uint("Balance of FTNVault ", address(vault).balance / 1

ether);

 emit log_named_address("The vault address ", address(vault));

}

}

Result

FTN-02 BAHAMUT EXECUTION AND CONSENSUS

Running 1 test for test/FTNVault.t.sol:PoC

[FAIL. Reason: EvmError: Revert] testSendFTN() (gas: 481340)

Logs:

 -------------- Before Ether Sent --------------

 Balance of Alice : 1000

 Balance of FTNVault : 0

 The vault address : 0xce71065d4017f316ec606fe4422e11eb2c47c246

Traces:

 [5138] PoC::setUp()

 ├─ [0] VM::deal(0x0000000000000000000000000000000000000001,

1000000000000000000000)

 │ └─ ← ()

 └─ ← ()

 [481340] PoC::testSendFTN()

 ├─ [428584] → new FTNVault@"0xce71…c246"

 │ ├─ emit OwnershipTransferred(previousOwner:

0x00, newOwner: PoC:

[0xb4c79dab8f259c7aee6e5b2aa729821864227e84])

 │ └─ ← 2022 bytes of code

 ├─ emit log_string(: "-------------- Before Ether Sent --------------")

 ├─ emit log_named_uint(key: "Balance of Alice ", val: 1000)

 ├─ emit log_named_uint(key: "Balance of FTNVault ", val: 0)

 ├─ emit log_named_address(key: "The vault address ", val: FTNVault:

[0xce71065d4017f316ec606fe4422e11eb2c47c246])

 ├─ [0] VM::startPrank(0x0000000000000000000000000000000000000001)

 │ └─ ← ()

 ├─ [45] FTNVault::fallback{value: 100000000000000000000}()

 │ └─ ← "EvmError: Revert"

 └─ ← "EvmError: Revert"

Test result: FAILED. 0 passed; 1 failed; finished in 786.35µs

Failed tests:

[FAIL. Reason: EvmError: Revert] testSendFTN() (gas: 481340)

Encountered a total of 1 failing tests, 0 tests succeeded

The result shows that the native token transfer from Alice to the vault is reverted.

Recommendation

Recommend adding the receive function in the contract to accept the native FTN token transfer.

Alleviation

FTN-02 BAHAMUT EXECUTION AND CONSENSUS

[Fasttoken - 05/09/2023] :

The team acknowledged the finding and decide not to make any change to the current version as the initial FTN tokens will

be sent to the contract in the genesis.

FTN-02 BAHAMUT EXECUTION AND CONSENSUS

FTN-03 DISCUSSION ON THE MINT WORKFLOW WITH FUNCTION
processBurnTransaction()

Category Severity Location Status

Logical Issue Minor bahamut/FTNVault.sol (bahamut): 64 Acknowledged

Description

Files:

bahamut/FTNVault.sol

Commit:

1f2392be6927c2227a0061a5c7c9f7c937545971

The contract FTNVault serves as a vault of native FTN tokens to redeem the same amount of FTN tokens that the user has

burnt on Ethereum. By design, the user burns the FTN token on Ethereum and redeems the same amount of the burnt FTN

token from the contract FTNVault through the function processBurnTransaction() with the burn transaction:

64 function processBurnTransaction(bytes32 burnTxHash_, address recipient_,

uint256 amount_) external {

65

66 require(initialized, 'Contract has not been initialized');

67 require(amount_ <= limits[msg.sender], 'Limit exceeded');

68 limits[msg.sender] -= amount_;

69 _processBurnTransaction(burnTxHash_, recipient_, amount_);

70 }

However, the current implementation seems to miss some logic to validate the burner and amount that is burnt on Ethereum.

1. There is no validation to ensure the passed amount is the amount burnt in the transaction;

2. Similarly, no validation to make sure the user is related to the burner that burns the FTN tokens. The only way is to

set the limits to a user via the function updateLimit() in a centralized manner;

3. No validation to ensure the passed burnTxHash_ is actually a burn transaction that happened on Ethereum; Any

user that has the limit is able to withdraw all the allowed balance by passing an unused bytes32 .

Recommendation

The auditing team would like to understand the workflow to redeem the FTN tokens from the burn transactions on Ethereum.

FTN-03 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fasttoken1/fasttoken-distribution-eth-contracts/tree/1f2392be6927c2227a0061a5c7c9f7c937545971

Alleviation

[Fasttoken - 05/09/2023] :

The team acknowledged the finding. As discussed, this issue remains as it is since there is no good way to validate the TRX

from Ethereum on Fastex Chain.

FTN-03 BAHAMUT EXECUTION AND CONSENSUS

MAI-01 MAINNET COULD POSSIBLY BE MISCONFIGURED

Category Severity Location Status

Logical Issue Minor config/params/mainnet_config.go (consensus): 92, 93 Resolved

Description

Files:

config/params/mainnet_config.go

config/params/minimal_config.go

Commit:

3b8da2895d7067405b54c0829eee7e044a0f978e

The parameters MaxEffectiveBalance and EjectionBalance were properly set in the configuration file

testnet_fastex_chain_config.go . However, they were not updated in the configuration file mannet_config.go to

accommodate the new features and functionality. A misconfiguration could cause errors or bugs that could negatively impact

the functionality of the project.

92 MaxEffectiveBalance: 32 * 1e9,

93 EjectionBalance: 16 * 1e9,

In addition, the below parameters in the configuration file minimal_config.go are not properly set.

20 MinGenesisTime: 1606824000, // Dec 1, 2020, 12pm UTC.

25 minimalConfig.MinDepositAmount = 1e9

26 minimalConfig.MaxEffectiveBalance = 32e9

27 minimalConfig.EjectionBalance = 16e9

28 minimalConfig.EffectiveBalanceIncrement = 1e9

Recommendation

We recommend reviewing the configuration files mannet_config.go and minimal_config.go to ensure that all relevant

configuration parameters are properly set.

Alleviation

MAI-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3b8da2895d7067405b54c0829eee7e044a0f978e

[Fasttoken - 05/25/2023] :

The team resolved the finding by changing the balance related constants in file mainnet_config.go :

// Gwei value constants.

MinDepositAmount: 1 * 1e9,

MaxEffectiveBalance: 8192 * 1e9,

EjectionBalance: 4096 * 1e9,

EffectiveBalanceIncrement: 1 * 1e9,

The change is reflected in the commit 3226f8330911cb8df77e775f0155b335ba771bd8 .

[CertiK - 05/25/2023] :

The constants in minimal_config.go has not been modified accordingly.

[Fasttoken - 07/06/2023] :

The team resolved the finding by making the changes in the commit 8198a02d28dee2b7485610279bcf24e4f0a2bf54 .

MAI-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8
https://github.com/fastexlabs/fastexchain-consensus/commit/8198a02d28dee2b7485610279bcf24e4f0a2bf54

PRP-01 THE OUTPUT BLOCK DOES NOT CONTAIN
ActivityChanges , TransactionsCount , BaseFee , AND

ExecutionHeight

Category Severity Location Status

Logical

Issue
Minor

beacon-chain/rpc/prysm/v1alpha1/validator/proposer_bellatrix.go (3226f

83): 306~317
Resolved

Description

Files:

beacon-chain/rpc/prysm/v1alpha1/validator/proposer_bellatrix.go

Commit:

3226f8330911cb8df77e775f0155b335ba771bd8

The function unblindBuilderBlock() retrieves the full payload block using the input blind block. However, the output block

does not contain the fields ActivityChanges , TransactionsCount , BaseFee , And ExecutionHeight .

306 Body: ðpb.BeaconBlockBodyBellatrix{

307 RandaoReveal: psb.Block.Body.RandaoReveal,

308 Eth1Data: psb.Block.Body.Eth1Data,

309 Graffiti: psb.Block.Body.Graffiti,

310 ProposerSlashings: psb.Block.Body.ProposerSlashings,

311 AttesterSlashings: psb.Block.Body.AttesterSlashings,

312 Attestations: psb.Block.Body.Attestations,

313 Deposits: psb.Block.Body.Deposits,

314 VoluntaryExits: psb.Block.Body.VoluntaryExits,

315 SyncAggregate: agg,

316 ExecutionPayload: pbPayload,

317 },

Recommendation

Recommend reviewing the logic again and ensuring all fields are included in the output block.

Alleviation

[Fasttoken - 06/09/2023] :

PRP-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8
https://github.com/fastexlabs/fastexchain-consensus/commit/88551682018d09cf69ab604d8ccb42e7024564eb

The team resolved the finding by adding the missing fields in the commit 88551682018d09cf69ab604d8ccb42e7024564eb .

PRP-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/commit/88551682018d09cf69ab604d8ccb42e7024564eb

REW-02 POSSIBLY INCORRECT CALCULATION OF BASE
PROPOSER REWARD

Category Severity Location Status

Logical Issue, Inconsistency Minor beacon-chain/core/altair/reward.go (3226f83): 65 Resolved

Description

Files:

beacon-chain/core/altair/reward.go

Commit:

3226f8330911cb8df77e775f0155b335ba771bd8

8198a02d28dee2b7485610279bcf24e4f0a2bf54

The fasttoken introduces a novel proposer base reward calculation based on the validator's power via the activity score

associated with the validator's registered contracts. The function BaseProposerReward() is used to compute the base

proposer reward defined in the whitepaper as follows:

where is the total effective activities of the validators and is the transaction constant gas in the window

of 1575 epochs. The is the base fee of the block and is the epoch window size 1575, is the number of validators

and is the constant .

Therefore, the base proposer reward in each epoch is , where (= 32) is the number of slots in an epoch.

On the other hand, the total validator base reward per epoch is given by:

 where is the total active balance, and is the constant 156 (according to the

config/params/mainnet_config.go in the commit 8198a02d28dee2b7485610279bcf24e4f0a2bf54).

Assume that the current number of validators is the target number 4096, and each of them has an effective balance of

. Then the base reward is

.

According to the design, this reward will be distributed to the validators for attestation rewards and participating sync

committees. In the Ethereum PoS, of the reward (i.e.,) is granted to the block proposers for proposing

blocks.

The fasttoken attempts to use the base proposer reward in each epoch (i.e.,) to replace the of the total

validator base reward per epoch as the reward to the block proposers. In this case, assume that each block has a half load

REW-02 BAHAMUT EXECUTION AND CONSENSUS

BPR = ,
W∗n∗gwei
(A+T)∗bf

A = ea ∑
i=1
n

i n T

bf W n

gwei 109

BPR ∗ s s

BR =total =
 B

B∗f f ∗ ,B B f

8192
∗ 109

156 ∗ =4096 ∗ 8192 ∗ 109 0.9 ∗ 10 gwei9

1/7 0.13 ∗ 109

32 ∗ BPR 1/7

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8
https://github.com/fastexlabs/fastexchain-consensus/commit/8198a02d28dee2b7485610279bcf24e4f0a2bf54
https://github.com/fastexlabs/fastexchain-consensus/commit/8198a02d28dee2b7485610279bcf24e4f0a2bf54

(15M gas consumed) and the base fee is , then the base proposer reward in each epoch is

Therefore, the calculated reward is close to the value in the new design.

However, in the implementation of the function BaseProposerReward() :

65 func BaseProposerReward(s state.ReadOnlyBeaconState, totalPower,

 totalEffectivePower uint64) (uint64, error) {

66 activity, err := helpers.TotalEffectiveActivity(s)

67 if err != nil {

68 return 0, errors.Wrap(err,

"could not calculate total effective activity")

69 }

70

71 sharedActivity := s.SharedActivity()

72 if sharedActivity == nil {

73 return 0, errors.New("nil shared activity in state")

74 }

75

76 period := uint64(params.BeaconConfig().EpochsPerActivityPeriod)

77 slotsPerEpoch := uint64(params.BeaconConfig().SlotsPerEpoch)

78 denominator := period * period * slotsPerEpoch * slotsPerEpoch

79 transactionsGas := sharedActivity.TransactionsGasPerPeriod

80 baseFee := sharedActivity.BaseFeePerPeriod

81 reward := baseFee * (activity + transactionsGas) / denominator

82 if totalPower == 0 {

83 return reward, nil

84 }

85

86 return reward * totalEffectivePower / totalPower, nil

87 }

The reward does not align with the formula in the whitepaper as the reward is not divided by the number of active validators.

Actually, the formula derived from the above code on average is as follows:

.

Recommendation

Recommend revisiting the calculation of the base proposer reward and implementing the correct formula in the whitepaper if

it is the intended design.

Alleviation

[Fasttoken - 07/10/2023] :

The team provided additional design documentation to confirm this is the intended design that the base proposer reward is

REW-02 BAHAMUT EXECUTION AND CONSENSUS

100 ∗ gwei

32 ∗ =
W∗n∗gwei
(A+T)∗bf 32 ∗ =4096∗gwei

(32∗15M)∗100∗gwei 0.395 ∗ 10 gwei,9

(A+ T) ∗ bf = 15M ∗ 100gwei = 1.5 ∗ 10 gwei9

the average burned amount of FTNs tokens in a single block during period. The whitepaper will be updated accordingly

soon.

REW-02 BAHAMUT EXECUTION AND CONSENSUS

33B-01 TYPO IN VARIABLE NAMES AND FUNCTION NAMES

Category Severity Location Status

Coding

Style
Informational

beacon-chain/execution/activities_processing.go (33b75d4): 62; bea

con-chain/rpc/apimiddleware/structs.go (33b75d4): 1019; beacon-ch

ain/rpc/prysm/v1alpha1/validator/proposer_eth1data.go (33b75d4):

119; config/features/config.go (33b75d4): 73, 209, 210, 211; config/f

eatures/flags.go (33b75d4): 85, 176; config/params/config.go (33b7

5d4): 145; config/params/mainnet_config.go (33b75d4): 202; validat

or/keymanager/remote-web3signer/v1/custom_mappers.go (33b75d

4): 288; validator/keymanager/remote-web3signer/v1/web3signer_ty

pes.go (33b75d4): 183

Resolved

Description

Files:

config/params/config.go

config/params/mainnet_config.go

config/features/config.go

config/features/flags.go

beacon-chain/rpc/prysm/v1alpha1/validator/proposer_eth1data.go

validator/keymanager/remote-web3signer/v1/custom_mappers.go

validator/keymanager/remote-web3signer/v1/web3signer_types.go

beacon-chain/execution/activities_processing.go

beacon-chain/rpc/apimiddleware/structs.go

beacon-chain/node/node.go

Commit:

33b75d4e162179d360e60ac88bb4289293b530a6

Variable Names

According to the context, the variable EpochsPerAcrivityUpdate should be EpochsPerActivityUpdate in the following

two places:

1. line 145 in the file config/params/config.go ;

2. line 202 in the file config/params/mainnet_config.go .

33B-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/33b75d4e162179d360e60ac88bb4289293b530a6

The variable DisableStakinContractCheck (disableStakinContractCheck) should be DisableStakingContractCheck

(disableStakingContractCheck) in the following places:

1. line 73, 209, 210, and 211 in the file config/features/config.go ;

2. line 85 and 176 in the file config/features/flags.go ;

3. line 119 in the file beacon-chain/rpc/prysm/v1alpha1/validator/proposer_eth1data.go .

The variable ContractAddres should be ContractAddress in the following places:

1. line 288 in the file validator/keymanager/remote-web3signer/v1/custom_mappers.go ;

2. line 183 in the file validator/keymanager/remote-web3signer/v1/web3signer_types.go .

The variable activiyChanges should be activityChanges in the following place:

line 62 in the file beacon-chain/execution/activities_processing.go .

The variable EffectivtActivity should be EffectiveActivity in the following place:

line 1019 in the file beacon-chain/rpc/apimiddleware/structs.go .

Function Names

The function name registerDeterminsticGenesisService() should be registerDeterministicGenesisService() in the

following places:

line 230 and 920 in the file beacon-chain/node/node.go .

Recommendation

Recommend correcting the aforementioned typos to improve the code readability.

Alleviation

[Fasttoken - 05/25/2023] :

The team heeded the advice and resolved the finding by either removing the relevant code or correcting the typo. The

change is reflected in the commit 3226f8330911cb8df77e775f0155b335ba771bd8 .

[CertiK - 05/25/2023] :

The following typos have not been corrected：

The variable DisableStakinContractCheck (disableStakinContractCheck) should be DisableStakingContractCheck

(disableStakingContractCheck) in the following places:

33B-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8

1. line 73, 209, 210, and 211 in the file config/features/config.go ;

2. line 85 and 176 in the file config/features/flags.go ;

3. line 119 in the file beacon-chain/rpc/prysm/v1alpha1/validator/proposer_eth1data.go .

The function name registerDeterminsticGenesisService() should be registerDeterministicGenesisService() in the

following places:

line 230 and 920 in the file beacon-chain/node/node.go .

[Fasttoken - 06/09/2023] :

The team resolved the finding by correcting the above typos in the commit 88551682018d09cf69ab604d8ccb42e7024564eb .

[CertiK - 07/06/2023] :

The variable disableStakinContractCheck should be disableStakingContractCheck in the following places of the

commit 8198a02d28dee2b7485610279bcf24e4f0a2bf54 :

1. line 202 and 203 in the file config/features/config.go ;

2. line 89 and 169 in the file config/features/flags.go ;

[Fasttoken - 07/20/2023] :

The team heeded the advice and resolved the finding by correcting the aforementioned typos in the commit

a98c0cb06842a9032f479b27757a1d99c39327ec .

33B-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/commit/88551682018d09cf69ab604d8ccb42e7024564eb
https://github.com/fastexlabs/fastexchain-consensus/commit/8198a02d28dee2b7485610279bcf24e4f0a2bf54
https://github.com/fastexlabs/fastexchain-consensus/commit/a98c0cb06842a9032f479b27757a1d99c39327ec

3B8-01 DISCUSSION ON VALUE OF SigmoidLimit

Category Severity Location Status

Logical

Issue
Informational

beacon-chain/core/altair/sync_committee.go (consensus): 154; bea

con-chain/core/helpers/validators.go (consensus): 405; config/para

ms/testnet_fastex_chain_config.go (consensus): 33

Resolved

Description

Files:

beacon-chain/core/altair/sync_committee.go

beacon-chain/core/helpers/validators.go

config/params/testnet_fastex_chain_config.go

Commit:

3b8da2895d7067405b54c0829eee7e044a0f978e

The block producer and sync committee member selection inherits the algorithm from the RANDAO randomness generation

in the Ethereum Proof of Stake.

In Ethereum Proof of Stake, the selection is performed through a shuffle to make the list of active validators randomly, then

for each validator, a random number rand is generated between 0 and MaxRand to check if the inequality

holds, where is the effective balance of the validator and is the max effective balance.

In the Fasttoken, the same approach is adopted with the following modification in the inequality

The sigmoid function on the left is used to adjust the effective balance of the validator, where the is the voting power of the

validator and is the max voting power of all the validators.

The current value of SigmoidLimit is 0.62 on the right, but the maximum value of the sigmoid function is

around 0.635 when the equals to .

In this case, if the voting power of validator , , then the value of the sigmoid is 0.62. That means a validator

only needs (not) of the maximum voting power to obtain the same formula as the Ethereum Proof of Stake.

Recommendation

3B8-01 BAHAMUT EXECUTION AND CONSENSUS

 ≥
s
s i

MaxRand
rand

s i i s

(2 ⋅ −
1+e−1.5⋅

P
P i

1 1) ⋅ ≥
s
s i

 ⋅
MaxRand
rand 0.62

P i

i P

2 ⋅ −
1+e−1.5⋅

P
P i

1 1

P i P

i P =i P ∗ 97%
97% 100% P

https://github.com/fastexlabs/fastexchain-consensus/tree/3b8da2895d7067405b54c0829eee7e044a0f978e

The auditing team would like to understand the intention to choose a different implementation for a different version and

wants to confirm if the two implementations are flipped.

Alleviation

[Fasttoken - 05/25/2023] :

The team removed the logic related to the sigmoid function, which makes the finding obsolete. The change is reflected in the

commit 3226f8330911cb8df77e775f0155b335ba771bd8 .

3B8-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8

BEA-01 TYPO IN ERROR MESSAGES

Category Severity Location Status

Coding

Style
Informational

beacon-chain/core/blocks/activities.go (33b75d4): 26, 39; beacon-c

hain/core/fastex-phase1/attestation.go (33b75d4): 55; beacon-chai

n/node/node.go (33b75d4): 229, 239; beacon-chain/p2p/pubsub_filt

er.go (33b75d4): 57; beacon-chain/rpc/apimiddleware/custom_hook

s.go (33b75d4): 849

Resolved

Description

Files:

beacon-chain/core/blocks/activities.go

beacon-chain/core/fastex-phase1/attestation.go

beacon-chain/p2p/pubsub_filter.go

beacon-chain/rpc/apimiddleware/custom_hooks.go

beacon-chain/node/node.go

Commit:

33b75d4e162179d360e60ac88bb4289293b530a6

There are some typos in the error messages in the current codebase:

beacon-chain/core/blocks/activities.go

in line 26, activties should be activities ;

in line 39, core.ProcessActivtiyNoVerifySignature should be core.ProcessActivityNoVerifySignature .

beacon-chain/core/fastex-phase1/attestation.go

in line 55, altair.ProcessAttestationNoVerifySignature should be

fastexphase1.ProcessAttestationNoVerifySignature ;

beacon-chain/p2p/pubsub_filter.go

in line 57, Could not determine Bellatrix fork digest should be Could not determine fastexPhase1 fork

digest .

beacon-chain/rpc/apimiddleware/custom_hooks.go

BEA-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/33b75d4e162179d360e60ac88bb4289293b530a6

in line 849, 4 unsupported block version '%s' should be unsupported block version '%s' .

beacon-chain/node/node.go

in line 229, Registering Determinstic Genesis Service should be Registering Deterministic Genesis

Service ;

in line 239, Registering Intial Sync Service should be Registering Initial Sync Service .

Recommendation

Recommend correcting the aforementioned typos to improve the code readability.

Alleviation

[Fasttoken - 05/25/2023] :

The team heeded the advice and resolved the finding by either removing the relevant code or correcting the typo. The

change is reflected in the commit 3226f8330911cb8df77e775f0155b335ba771bd8 .

[CertiK - 05/25/2023] :

Determinstic has not been corrected in the following code of file beacon-chain/node/node.go:

226 log.Debugln("Registering Determinstic Genesis Service")

227 if err := beacon.registerDeterminsticGenesisService(); err != nil {

228 return nil, err

229 }

[Fasttoken - 07/06/2023] :

The team resolved the finding by correcting the aforementioned typo in the commit

8198a02d28dee2b7485610279bcf24e4f0a2bf54 .

BEA-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8
https://github.com/fastexlabs/fastexchain-consensus/commit/8198a02d28dee2b7485610279bcf24e4f0a2bf54

COB-02 DISCUSSION ON THE USE OF THE SIGMOID FUNCTION IN
BLOCK PROPOSER AND SYNC COMMITTEE MEMBERS
SELECTION

Category Severity Location Status

Logical

Issue
Informational

beacon-chain/core/altair/sync_committee.go (33b75d4): 143~166;

beacon-chain/core/helpers/validators.go (33b75d4): 431~454
Resolved

Description

Files:

beacon-chain/core/helpers/validators.go

beacon-chain/core/altair/sync_committee.go

Commit:

33b75d4e162179d360e60ac88bb4289293b530a6

According to the current codebase, the block producer and sync committee member selection inherits the algorithm from the

RANDAO randomness generation in the Ethereum Proof of Stake. Before the version FastexPhase1 , the implementation

contains some modifications that use the sigmoid function and validator's power defined by the validator's activity score.

In Ethereum Proof of Stake, the selection is performed through a shuffle to make the list of active validators randomly, then

for each validator, a random number rand is generated between 0 and MaxRand to check if the inequality

holds, where is the effective balance of the validator and is the max effective balance.

In the Fasttoken, the same approach is adopted with the following changes in the inequality

The sigmoid function on the left is used to adjust the effective balance of the validator, where the is the power of the

validator and is the max power of all the validators.

Scenario

Consider the following scenario:

1. Based on the design, a block proposer could possibly get 1/8 of the block reward, that is, 1/8 (=0.125) of A+T ,

where A is the gas consumed in contracts associated with validators and T is the transaction constant gas usage;

COB-02 BAHAMUT EXECUTION AND CONSENSUS

 ≥
s
s i

MaxRand
rand

s i i s

(2 ⋅ −
1+e−1.5⋅

P
P i

1 1) ⋅ ≥
s
s i

 ⋅
MaxRand
rand 0.62

P i

i P

https://github.com/fastexlabs/fastexchain-consensus/tree/33b75d4e162179d360e60ac88bb4289293b530a6

2. For simplicity, assume the usage is the same for every block and there is no gas consumed in contracts not

associated with validators.

3. Taking the ratio 1/8 as a benchmark, we assume that a validator X takes 1/8 of the total power among all validators

and the rest of the validators hold the remaining 7/8 of total power;

4. Assume the validator X that holds 1/8 of the total power is the one of max power;

5. Assume there are 10000 active validators, and the 9999 validators have the same power, ;

6. Then the ratio , which gives us the value of the sigmoid function on the left, 0.0005;

7. Dividing this value by 0.62 is around 0.0008;

8. Assume the effective balances of all validators are the max effective balance. In this case, the validator X has the

probability to be selected as a block proposer is around . The

result is 0.111, which is slightly less than 0.125;

9. The concern is that this design will bring more centralization risk in the consensus as opposed to the original

Ethereum Proof of Stake. It is difficult for a validator to control 1/8 of total staking, but it will be easier when combined

with the activity score.

Recommendation

The auditing team would like to confirm with the Fasttoken team the possible scenario in which the validator of max power

could have too much power in the consensus upon the introduction of activity score and power.

Alleviation

[Fasttoken - 05/25/2023] :

The team removed the logic related to the sigmoid function, which makes the finding obsolete. The change is reflected in the

commit 3226f8330911cb8df77e775f0155b335ba771bd8 .

COB-02 BAHAMUT EXECUTION AND CONSENSUS

P =i 7/(8 ∗ 9999)

 =
P
P i

9999
7

1/10000/(0.0008 ∗ 9999/10000 + 1/10000)

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8

COB-03 DISCUSSION ON TWO IMPLEMENTATIONS OF BLOCK
PROPOSER AND SYNC COMMITTEE SELECTION IN
DIFFERENT VERSIONS

Category Severity Location Status

Logical

Issue
Informational

beacon-chain/core/altair/sync_committee.go (33b75d4): 64~68; be

acon-chain/core/helpers/beacon_committee.go (33b75d4): 452~46

4

Resolved

Description

Files:

beacon-chain/core/helpers/beacon_committee.go

beacon-chain/core/helpers/validators.go

beacon-chain/core/altair/sync_committee.go

Commit:

33b75d4e162179d360e60ac88bb4289293b530a6

In both functions BeaconProposerIndex() and precomputeProposerIndices() , an if-else logic is coded to select the

function for computing the index of the proposer based on the Version .

The function BeaconProposerIndex() in beacon-chain/core/helpers/validators.go:

301 if state.Version() < version.FastexPhase1 {

302 return ComputeProposerIndex(state, indices, seedWithSlotHash)

303 }

304 return ComputeProposerIndexFastexPhase1(state, indices, seedWithSlotHash)

The function precomputeProposerIndices() in beacon-chain/core/helpers/beacon_committee.go:

COB-03 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/33b75d4e162179d360e60ac88bb4289293b530a6

453 if state.Version() < version.FastexPhase1 {

454 index, err = ComputeProposerIndex(state, activeIndices,

 seedWithSlotHash)

455 if err != nil {

456 return nil, err

457 }

458 } else {

459 index, err = ComputeProposerIndexFastexPhase1(state, activeIndices,

 seedWithSlotHash)

460 if err != nil {

461 return nil, err

462 }

463 }

464 proposerIndices[i] = index

Based on our understanding, when the version is before the FastexPhase1 , the consensus client should still be in PoS

mode, and the logic for calculating the index of the proposer should be the same as in Ethereum. However, in the

implementation, the ComputeProposerIndex() function takes not only the effective balance of the validator but also the

effective activity, which should be calculated in the PoSA mode.

The function ComputeProposerIndex() in beacon-chain/core/helpers/validators.go:

384

// ComputeProposerIndex returns the index sampled by effective balance, which is

used to calculate the proposer.

385 func ComputeProposerIndex(bState state.ReadOnlyBeaconState, activeIndices []

primitives.ValidatorIndex, seed [32]byte) (primitives.ValidatorIndex, error) {

386 length := uint64(len(activeIndices))

387 if length == 0 {

388 return 0, errors.New("empty active indices list")

389 }

390 maxRandomByte := new(big.Float).SetUint64(1<<16 - 1)

391 hashFunc := hash.CustomSHA256Hasher()

392

393 txGasPerPeriod := bState.TransactionsGasPerPeriod()

394 var nonStakersGasPerPeriod uint64

395 // Ignore nonStakersGasPerPeriod in post-FastexPhase1 fork.

396 if bState.Version() < version.FastexPhase1 {

397 nonStakersGasPerPeriod = bState.NonStakersGasPerPeriod()

398 }

399 ...

In addition, a similar scenario occurs in the sync committee members selection:

beacon-chain/core/altair/sync_committee.go

COB-03 BAHAMUT EXECUTION AND CONSENSUS

61 func NextSyncCommittee(ctx context.Context, s state.BeaconState) (*ethpb.

SyncCommittee, error) {

62 var indices []primitives.ValidatorIndex

63 var err error

64 if s.Version() < version.FastexPhase1 {

65 indices, err = NextSyncCommitteeIndices(ctx, s)

66 } else {

67 indices, err = NextSyncCommitteeIndicesFastexPhase1(ctx, s)

68 }

Before the FastexPhase1 , the NextSyncCommittee() calls the NextSyncCommitteeIndices() that needs the activity

score to compute the validator power:

beacon-chain/core/altair/sync_committee.go

88 func NextSyncCommitteeIndices(ctx context.Context, s state.BeaconState) ([]

primitives.ValidatorIndex, error) {

89 epoch := coreTime.NextEpoch(s)

90 indices, err := helpers.ActiveValidatorIndices(ctx, s, epoch)

91 if err != nil {

92 return nil, err

93 }

94 seed, err := helpers.Seed(s, epoch, params.BeaconConfig().

DomainSyncCommittee)

95 if err != nil {

96 return nil, err

97 }

98 count := uint64(len(indices))

99 cfg := params.BeaconConfig()

100 syncCommitteeSize := cfg.SyncCommitteeSize

101 cIndices := make([]primitives.ValidatorIndex, 0, syncCommitteeSize)

102 hashFunc := hash.CustomSHA256Hasher()

103

104 txGasPerPeriod := s.TransactionsGasPerPeriod()

105 var nonStakersGasPerPeriod uint64

106 // Ignore nonStakersGasPerPeriod in post-FastexPhase1 forks.

107 if s.Version() < version.FastexPhase1 {

108 nonStakersGasPerPeriod = s.NonStakersGasPerPeriod()

109 }

110 ...

In the post FastexPhase1 , it invokes the NextSyncCommitteeIndicesFastexPhase1() that only utilizes the effective

balance:

COB-03 BAHAMUT EXECUTION AND CONSENSUS

174 func NextSyncCommitteeIndicesFastexPhase1(ctx context.Context, s state.

BeaconState) ([]primitives.ValidatorIndex, error) {

175 epoch := coreTime.NextEpoch(s)

176 indices, err := helpers.ActiveValidatorIndices(ctx, s, epoch)

177 if err != nil {

178 return nil, err

179 }

180 seed, err := helpers.Seed(s, epoch, params.BeaconConfig().

DomainSyncCommittee)

181 if err != nil {

182 return nil, err

183 }

184 count := uint64(len(indices))

185 cfg := params.BeaconConfig()

186 syncCommitteeSize := cfg.SyncCommitteeSize

187 cIndices := make([]primitives.ValidatorIndex, 0, syncCommitteeSize)

188 hashFunc := hash.CustomSHA256Hasher()

189

190 for i := primitives.ValidatorIndex(0); uint64(len(cIndices)) < params.

BeaconConfig().SyncCommitteeSize; i++ {

191 if ctx.Err() != nil {

192 return nil, ctx.Err()

193 }

194 ...

Recommendation

The auditing team would like to understand the intention to choose a different implementation for a different version and

wants to confirm if the two implementations are flipped.

Alleviation

[Fasttoken - 05/25/2023] :

The team only kept one implementation by removing other implementations based on the versions. The change is reflected

in the commit 3226f8330911cb8df77e775f0155b335ba771bd8 .

COB-03 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8

COE-03 INCONSISTENCY BETWEEN IMPLEMENTATION AND
WHITEPAPER

Category Severity Location Status

Logical

Issue
Informational

beacon-chain/core/altair/sync_committee.go (consensus): 138; be

acon-chain/core/helpers/validators.go (consensus): 389
Resolved

Description

Files:

beacon-chain/core/altair/sync_committee.go

beacon-chain/core/helpers/validators.go

Commit:

3b8da2895d7067405b54c0829eee7e044a0f978e

According to the Fasttoken consensus whitepaper, the voting power of validator is defined as:

where is the sum of all transaction constant gas usage components, that is, where N is the number

of all transactions which have been executed during the epoch .

However, in line 389 of the implementation:

beacon-chain/core/helpers/validators.go, beacon-chain/core/altair/sync_committee.go

COE-03 BAHAMUT EXECUTION AND CONSENSUS

i

P =i
e T ⋅e +

S
s i A ,V i

e

T e T =e 21000 ∗ N

e

https://github.com/fastexlabs/fastexchain-consensus/tree/3b8da2895d7067405b54c0829eee7e044a0f978e

343 func ComputeProposerIndex(bState state.ReadOnlyBeaconState, activeIndices []

primitives.ValidatorIndex, seed [32]byte) (primitives.ValidatorIndex, error) {

344 length := uint64(len(activeIndices))

345 if length == 0 {

346 return 0, errors.New("empty active indices list")

347 }

348 maxRandomByte := new(big.Float).SetUint64(1<<16 - 1)

349 hashFunc := hash.CustomSHA256Hasher()

350

351 txGasPerPeriod := bState.TransactionsGasPerPeriod()

352 var nonStakersGasPerPeriod uint64

353 // Ignore nonStakersGasPerPeriod in post-FastexPhase1 fork.

354 if bState.Version() < version.FastexPhase1 {

355 nonStakersGasPerPeriod = bState.NonStakersGasPerPeriod()

356 }

357 totalBalance := TotalBalance(bState, activeIndices)

358 maxPower, err := MaxPower(bState, activeIndices, totalBalance,

 txGasPerPeriod, nonStakersGasPerPeriod)

359 maxPowerFloat := new(big.Float).SetInt(maxPower)

360 if err != nil {

361 return 0, err

362 }

363

364 for i := uint64(0); ; i++ {

365 candidateIndex, err := ComputeShuffledIndex(primitives.ValidatorIndex(i

%length), length, seed, true /* shuffle */)

366 if err != nil {

367 return 0, err

368 }

369 candidateIndex = activeIndices[candidateIndex]

370 if uint64(candidateIndex) >= uint64(bState.NumValidators()) {

371 return 0, errors.New("active index out of range")

372 }

373 b := append(seed[:], bytesutil.Bytes8(i/16)...)

374 hash := hashFunc(b)

375 bytes2 := append([]byte{}, hash[i%16], hash[16+i%16])

376 randomBytes := new(big.Float).SetUint64(uint64(bytesutil.FromBytes2(

bytes2)))

377 v, err := bState.ValidatorAtIndexReadOnly(candidateIndex)

378 if err != nil {

379 return 0, err

380 }

381

382 totalBalanceBig := new(big.Int).SetUint64(totalBalance / params.

BeaconConfig().EffectiveBalanceIncrement)

383 effectiveBalanceBig := new(big.Int).SetUint64(v.EffectiveBalance() /

 params.BeaconConfig().EffectiveBalanceIncrement)

384 effectiveActivityBig := new(big.Int).SetUint64(v.EffectiveActivity())

385 txGasBig := new(big.Int).SetUint64(txGasPerPeriod)

386 nonStakersGasBig := new(big.Int).SetUint64(nonStakersGasPerPeriod)

387

388 var power *big.Int

COE-03 BAHAMUT EXECUTION AND CONSENSUS

389 power = new(big.Int).Add(txGasBig, nonStakersGasBig)

390 power = new(big.Int).Mul(power, effectiveBalanceBig)

391 power = new(big.Int).Div(power, totalBalanceBig)

392 power = new(big.Int).Add(power, effectiveActivityBig)

393

394 ...

, where is the aggregation of the constant gas usage argument equal to 21000, and is the gas usage of

smart contracts not associated with any validator, both of which are calculated in the sliding window of 1575 epochs, not in

each epoch.

The part, nonStakersGasBig is zero only in the post-FastexPhase1 fork (shown in lines 354-356), which matches the

formula in the whitepaper.

Recommendation

Recommend adjusting the description in the whitepaper to align with the implementation if this is the intended

implementation.

Alleviation

[Fasttoken - 05/25/2023] :

The team resolved the finding by removing the nonStakersGasPerPeriod (B) from the implementation and difference

among the versions. The change is reflected in the commit 3226f8330911cb8df77e775f0155b335ba771bd8 .

[CertiK - 05/25/2023] :

The inconsistency of the notation T_e on the documentation and implementation has been consolidated into another

finding.

COE-03 BAHAMUT EXECUTION AND CONSENSUS

T =e T + B T B

B

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8

DEO-02 DISCUSSION ON CONTRACT REGISTRATION WITH
VALIDATORS

Category Severity Location Status

Logical Issue Informational beacon-chain/core/blocks/deposit.go (consensus): 172 Resolved

Description

Files:

beacon-chain/core/blocks/deposit.go

Commit:

3b8da2895d7067405b54c0829eee7e044a0f978e

The Fasttoken consensus algorithm utilizes the gas usage of contracts that are associated with the validators as activity

scores to compute the power of the validators.

According to the current codebase, the registration of contracts with validators occurs in the contract deposit_contract in

the execution layer where the validators are able to deposit the stake as well as the contract address for the registration

process.

In the current implementation, the validator only needs to pass an address for the registration. The auditing team would like

to confirm with the Fasttoken team if the following points are taken into account:

1. The passed address has not been validated that is associated with an existing contract, which means it could be an

EOA or a placeholder for future contract deployment. Since some classes of addresses (i.e., vanity addresses) are

popular in the blockchain, the validators could register many such addresses. If some contract is deployed in the

future with these addresses, the validator will own the activity generated by these contracts.

2. If the passed address comes from an existing contract, it could belong to other deployers and not necessarily be

owned by this validator. Considering the blockchain is a dark forest, the contract address registration could also be

front run by other validators.

Recommendation

The auditing team would like to confirm with the Fasttoken team if these scenarios have been considered.

Alleviation

DEO-02 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3b8da2895d7067405b54c0829eee7e044a0f978e

[Fasttoken - 06/06/2023] :

The team resolved the finding by adding the contract deployment logic in the execution layer in the commit

716ea69939139eab9f45b4c68347eb67de492bea and changed the corresponding logic in the deposit contract in the

consensus layer in the commit cffbd04e743737989e44cf0ebae70fd353c5a539 .

DEO-02 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-execution/commit/716ea69939139eab9f45b4c68347eb67de492bea
https://github.com/fastexlabs/fastexchain-consensus/commit/cffbd04e743737989e44cf0ebae70fd353c5a539

DES-02 DISCUSSION ON INCONSISTENCY BETWEEN DEPOSIT
CONTRACT AND ITS BINDING

Category Severity Location Status

Logical

Issue
Informational

contracts/deposit/contract.go (consensus): 269~279; contracts/de

posit/deposit_contract.sol (consensus): 101~106
Resolved

Description

Files:

contracts/deposit/contract.go

contracts/deposit/deposit_contract.sol

Commit:

3b8da2895d7067405b54c0829eee7e044a0f978e

The contract deposit_contract serves as the entry point for the validator registration on the execution layer. In the current

codebase, the deposit_contract has not been modified to align with Fasttoken's new design. Its binding contract.go

seems to be updated as the ABI is different from the current deposit_contract , but the deposit event is not updated, as it

does not contain DeployedAddress and DeploymentNonce :

contracts/deposit/contract.go

362 type DepositContractDepositEvent struct {

363 Pubkey []byte

364 WithdrawalCredentials []byte

365 Amount []byte

366 Signature []byte

367 Index []byte

368 Raw types.Log // Blockchain specific contextual infos

369 }

Additionally, the function Deposit() is supposed to be only used for testing as it includes hardcoded address and nonce:

contracts/deposit/contract.go

DES-02 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3b8da2895d7067405b54c0829eee7e044a0f978e

269 func (_DepositContract *DepositContractTransactor) Deposit(opts *bind.

TransactOpts, pubkey []byte, withdrawal_credentials []byte, signature []byte,

 deposit_data_root [32]byte) (*types.Transaction, error) {

270 return _DepositContract.contract.Transact(

271 opts,

272 "deposit",

273 pubkey,

274 withdrawal_credentials, signature,

275 deposit_data_root,

276 common.HexToAddress("0x11"),

277 big.NewInt(1))

278 }

Recommendation

The auditing team wants to confirm with the Fasttoken team if the updated deposit_contract could be provided and if the

contract.go reflects the latest changes.

Alleviation

[Fasttoken - 06/06/2023] :

The team resolved the finding by updating the deposit contract and its binding files in the commit

cffbd04e743737989e44cf0ebae70fd353c5a539 .

DES-02 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/commit/cffbd04e743737989e44cf0ebae70fd353c5a539

GLOBAL-01 CURRENT VERSION DOES NOT CONTAIN PATCH FOR
MEV-BOOST ATTACK

Category Severity Location Status

Inconsistency Informational Resolved

Description

Commit:

33b75d4e162179d360e60ac88bb4289293b530a6

MEV bots serves as a tool to frontrun a pending transaction to extract the value. To prevent being frontrun by themselves,

MEV bots could use MEV-Boost/Relays as trusted mediator between block producers and block builders, which is an

implementation of proposer-builder separation (PBS) built by Flashbots for the Ethereum Proof of Stake.

Validators could run MEV-Boost to maximize their staking reward by selling blockspace to an open market of builders. Block

proposers could bid on transactions, then builders create blocks that include the most valuable transactions, and validators

sign the transactions. Normally, blocker proposers can not see the transactions in the block until they signed the block

header, which makes it difficult to frontrun the transactions in the block.

To identify transactions for exploit, the validator sent a signed, invalid block to MEV-Boost/Relay, which replied with the

transactions that should have been included in that block. With the transactions in the block revealed, the validator could

observe the transactions and manipulate the transactions. This critical vulnerability was exploited on April 3rd, 2023, which

leads to ~20M asset loss of multiple sandwich bots.

The patch has been released on the MEV-Boost Relay , but it requires the corresponding modification of the client, which

has been released in the Prysm v4.0.2, but it is not included in the Prysm v3.2.2.

Since the Bahamut is built on the Prysm v3.2.2 and the validators may also run the MEV-Boost/Relay, it is recommended to

upgrade to the latest version to ensure the fix work properly.

Reference:

Post mortem

MEV Bot Incident Analysis

Recommendation

Recommend updating to the latest version (or at least v4.0.2) to include the patch.

Alleviation

GLOBAL-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/33b75d4e162179d360e60ac88bb4289293b530a6
https://github.com/flashbots/mev-boost-relay/pull/330
https://collective.flashbots.net/t/post-mortem-april-3rd-2023-mev-boost-relay-incident-and-related-timing-issue/1540
https://www.certik.com/resources/blog/30h7lDtiv9pJiwloeTPXgW-mev-bot-incident-analysis

[Fasttoken - 05/25/2023] :

The team heeded the advice and resolved the finding by updating the codebase to Prysm v4.0.3. The change is reflected in

the commit 3226f8330911cb8df77e775f0155b335ba771bd8 .

GLOBAL-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8

REW-01 DISCUSSION ON THE CALCULATION OF
BaseProposerReward

Category Severity Location Status

Logical Issue Informational beacon-chain/core/fastex-phase1/reward.go (33b75d4): 50 Resolved

Description

Files:

beacon-chain/core/fastex-phase1/reward.go

Commit:

33b75d4e162179d360e60ac88bb4289293b530a6

The fasttoken introduces a novel proposer base reward calculation based on the validator's power via the activity score

associated with the validator's registered contracts. The function BaseProposerReward() is used to compute the base

proposer reward as follows:

where is the total effective activities of the validators and is the transaction constant gas in the window

of 1575 epochs. The is the base fee of the block and is the epoch window size 1575, is the number of validators

and is the constant .

Therefore, the base proposer reward in each epoch is , where (= 32) is the number of slots in an epoch.

On the other hand, the total validator base reward per epoch is given by:

 where is the total active balance, and is the constant 156.

Assume that the current number of validators is the target number 4096, and each of them has an effective balance of

. Then the base reward is

.

According to the design, of the reward will be distributed to the validators for attestation rewards and participating sync

committees. In the Ethereum PoS, the remaining of the reward (i.e.,) is granted to the block proposers

for proposing blocks.

The fasttoken attempts to use the base proposer reward in each epoch (i.e.,) to replace the of the total

validator base reward per epoch as the reward to the block proposers. In this case, assume that each block has a half load

(15M gas consumed) and the base fee is , then the base proposer reward in each epoch is

REW-01 BAHAMUT EXECUTION AND CONSENSUS

BPR = ,
W∗n∗gwei
(A+T)∗bf

A = ea ∑i=1
n

i n T

bf W n

gwei 109

BPR ∗ s s

BR =total =
 B

B∗f f ∗ ,B B f

8192
∗ 109

156 ∗ =4096 ∗ 8192 ∗ 109 0.9 ∗ 10 gwei9

7/8
1/8 0.1125 ∗ 109

32 ∗ BPR 1/8

100 ∗ gwei

https://github.com/fastexlabs/fastexchain-consensus/tree/33b75d4e162179d360e60ac88bb4289293b530a6

which is larger than the of the total validator base reward per epoch (). In this case, the block proposers

will be incentivized for their duties.

However, the auditing team has the following points that would like to check with the fasttoken team:

1. The base proposer reward depends on the . If the block activity is low for a long time, then the

could be very small (because it is linear with .) compared to the stable reward;

2. If the number of validators increases, then the increases but decreases. Take the max number of

validators, 20480 as an example, the will be of the previous one, which is but the of

the total validator base reward is .

In both cases, the block proposer reward based on the new design could be less than the of the total validator base

reward in the old design. As a result, the block proposers could possibly be disincentivized to participate in the consensus

because the reward in the new design is not predictable and prone to change.

Recommendation

The auditing team would like to check with the fasttoken team if this is the intended design.

Alleviation

[Fasttoken - 07/07/2023] :

The team confirmed that this is the intended design. The base proposer reward is the average burned amount of FTNs in a

block during period.

REW-01 BAHAMUT EXECUTION AND CONSENSUS

32 ∗ =
W∗n∗gwei
(A+T)∗bf 32 ∗ =4096∗gwei

(32∗15M)∗100∗gwei 0.395 ∗ 10 gwei,9

1/8 0.1125 ∗ 109

BPR A+ T BPR

A+ T 1/8

BR total BPR

BPR 1/5 0.079 ∗ 109 1/8
0.25 ∗ 109

1/8

STF-01 TYPO IN THE CODEBASE OF EXECUTION LAYER

Category Severity Location Status

Coding Style Informational core/vm/stateful_contracts.go (execution-716ea69): 65, 70, 102 Resolved

Description

Files:

core/vm/stateful_contracts.go

Commit:

716ea69939139eab9f45b4c68347eb67de492bea

In the aforementioned places, statefulPrecomiledContractWithSelectors should be

statefulPrecompiledContractWithSelectors .

Recommendation

Recommend correcting the typo to improve the code readability.

Alleviation

[Fasttoken - 07/06/2023] :

The team heeded the advice and resolved the finding in the commit 3d669ac92faa0747a2aa2e8905e46d39c563d114 .

STF-01 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-execution/tree/716ea69939139eab9f45b4c68347eb67de492bea
https://github.com/fastexlabs/fastexchain-execution/commit/3d669ac92faa0747a2aa2e8905e46d39c563d114

STT-02 TYPO IN THE CODEBASE OF CONSENSUS LAYER

Category Severity Location Status

Coding

Style
Informational

beacon-chain/state/stateutil/activity_changes_root.go (consensus-cf

fbd04): 17, 23; beacon-chain/state/stateutil/field_root_shared_activit

y.go (consensus-cffbd04): 15; beacon-chain/state/stateutil/shared_a

ctivity_root.go (consensus-cffbd04): 13

Resolved

Description

Files:

beacon-chain/state/stateutil/activity_changes_root.go

beacon-chain/state/stateutil/field_root_shared_activity.go

beacon-chain/state/stateutil/shared_activity_root.go

Commit:

cffbd04e743737989e44cf0ebae70fd353c5a539

beacon-chain/state/stateutil/activity_changes_root.go

in lines 17 and 23, merkleiztion should be merkleization .

beacon-chain/state/stateutil/field_root_shared_activity.go

in line 15, function name SharedActivityRootWithHaher() should be SharedActivityRootWithHasher() .

beacon-chain/state/stateutil/shared_activity_root.go

in line 13, function name SharedActivityRootWithHaher() should be SharedActivityRootWithHasher() .

Recommendation

Recommend correcting the typo to improve the code readability.

Alleviation

[Fasttoken - 07/06/2023] :

The team heeded the advice and resolved the finding in the commit 8198a02d28dee2b7485610279bcf24e4f0a2bf54 .

STT-02 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/commit/cffbd04e743737989e44cf0ebae70fd353c5a539
https://github.com/fastexlabs/fastexchain-consensus/commit/8198a02d28dee2b7485610279bcf24e4f0a2bf54

VAL-02 TYPO IN FUNCTION NAME
isEligibileForActivationQueue()

Category Severity Location Status

Coding

Style
Informational

beacon-chain/core/helpers/validators.go (3226f83): 498, 504, 50

8
Resolved

Description

Files:

beacon-chain/core/helpers/validators.go

Commit:

3226f8330911cb8df77e775f0155b335ba771bd8

In the line 498, 504 and 508 of file beacon-chain/core/helpers/validators.go , the function name

isEligibileForActivationQueue() is supposed to be isEligibleForActivationQueue() .

Recommendation

Recommend correcting the typo to improve the code readability.

Alleviation

[Fasttoken - 07/06/2023] :

The team heeded the advice and resolved the finding in the commit 8198a02d28dee2b7485610279bcf24e4f0a2bf54 .

VAL-02 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8
https://github.com/fastexlabs/fastexchain-consensus/commit/8198a02d28dee2b7485610279bcf24e4f0a2bf54

VAL-03 CODE SIMPLIFICATION IN FUNCTION RandomBytes()

Category Severity Location Status

Coding

Style
Informational

beacon-chain/core/helpers/validators.go (3226f83): 422~424, 43

0~434
Resolved

Description

Files:

beacon-chain/core/helpers/validators.go

Commit:

3226f8330911cb8df77e775f0155b335ba771bd8

The function RandomBytes() is intended to generate a pseudo-random number between 0 and totalEffectivePower -1.

The randomNumber generated in line 424 with index 0 will be overwritten by the for loop in line 430, which can be merged

into the for loop and start the index with 0.

419 func RandomBytes(seed [32]byte, totalEffectivePower uint64) uint64 {

420 maxRandomBytes := uint64(1<<64 - 1)

421 hashFunc := hash.CustomSHA256Hasher()

422 hash := hashFunc(append(seed[:], bytesutil.Bytes8(0)...))

423 randomBytes := hash[:8]

424 randomNumber := bytesutil.FromBytes8(randomBytes)

425

426 if totalEffectivePower == 0 {

427 return 0

428 }

429

430 for i := uint64(1); randomNumber > (maxRandomBytes/totalEffectivePower)*

totalEffectivePower; i++ {

431 hash = hashFunc(append(seed[:], bytesutil.Bytes8(i)...))

432 randomBytes = hash[:8]

433 randomNumber = bytesutil.FromBytes8(randomBytes)

434 }

435

436 return randomNumber % totalEffectivePower

437 }

Recommendation

Recommend merging the random number generation with index 0 into the for loop.

VAL-03 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8

Alleviation

[Fasttoken - 07/20/2023] :

The team heeded the advice and resolved the finding by merging the random number generation with index 0 into the for

loop in the commit a98c0cb06842a9032f479b27757a1d99c39327ec .

 for i := uint64(0); ; i++ {

hash := hashFunc(append(seed[:], bytesutil.Bytes8(i)...))

random = bytesutil.FromBytes8(hash[:8])

if random <= (maxRandomBytes/totalEffectivePower)*totalEffectivePower {

return random % totalEffectivePower

}

}

[CertiK - 07/20/2023] :

Recommend changing the <= to < in the following condition so that the returned values in [0, totalEffectivePower)

have the same probability:

if random <= (maxRandomBytes/totalEffectivePower)*totalEffectivePower {

return random % totalEffectivePower

}

[Fasttoken - 07/25/2023] :

The team heeded the advice and resolved the finding by changing <= to < in the commit

b7e967722abcf62356caaf0c20e536f3746e41b8 .

VAL-03 BAHAMUT EXECUTION AND CONSENSUS

https://github.com/fastexlabs/fastexchain-consensus/commit/a98c0cb06842a9032f479b27757a1d99c39327ec
https://github.com/fastexlabs/fastexchain-consensus/commit/b7e967722abcf62356caaf0c20e536f3746e41b8

VAL-04 INCONSISTENCY BETWEEN IMPLEMENTATION AND
WHITEPAPER ON THE CALCULATION OF VALIDATOR'S
POWER

Category Severity Location Status

Inconsistency Informational
beacon-chain/core/helpers/validators.go (3226f83): 370, 4

54
Acknowledged

Description

Files:

beacon-chain/core/helpers/validators.go

Commit:

3226f8330911cb8df77e775f0155b335ba771bd8

According to the Fasttoken consensus whitepaper, the -th validator's (denoted as) power is defined as:

where

 is the sum of all transaction constant gas usage components, that is, where N is the number

of all transactions which have been executed during the epoch .

 is the staked amount of the -th validator;

 is the sum of all validators' staked balances;

 is the activity score assigned to the validator for the epoch .

In the implementation, the is assumed that the staked amounts of all the validators are the equal, so it is (n is the

number of active validators):

transactionsGas := sharedActivity.TransactionsGasPerPeriod / length

Moreover, the and is the rolling sum of window size period given by the formula

effectiveActivity := ((val.EffectiveActivity+activity)*period -

val.EffectiveActivity) / period

and

VAL-04 BAHAMUT EXECUTION AND CONSENSUS

i V i

P =i
e T ⋅e +

S
s i A ,V i

e

T e T =e 21000 ∗ N

e

s i i

S

A V i

e V i e

S
s i

n
1

T e A V i

e

https://github.com/fastexlabs/fastexchain-consensus/tree/3226f8330911cb8df77e775f0155b335ba771bd8

sharedActivity.TransactionsGasPerPeriod = ((gasPerPeriod+gasPerEpoch)*period -

gasPerPeriod) / period

, which are not the values in the current epoch .

Recommendation

Recommend adjusting the whitepaper if the implementation is the intended design.

Alleviation

[Fasttoken - 07/20/2023] :

Issue acknowledged. The team will fix the issue in the future, which will not be included in this audit engagement.

VAL-04 BAHAMUT EXECUTION AND CONSENSUS

e

APPENDIX BAHAMUT EXECUTION AND CONSENSUS

Finding Categories

Categories Description

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can

be improved to make the code more understandable and maintainable.

Incorrect

Calculation

Incorrect Calculation findings are about issues in numeric computation such as rounding errors,

overflows, out-of-bounds and any computation that is not intended.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

and may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX BAHAMUT EXECUTION AND CONSENSUS

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER BAHAMUT EXECUTION AND CONSENSUS

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER BAHAMUT EXECUTION AND CONSENSUS

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Bahamut Execution and Consensus Security Assessment CertiK Assessed on Aug 1st, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

